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Figure 1: DeepLens is an interactive system for supporting out-of-distribution (OOD) data detection in NLP models. The

developer can detect OOD issues by dynamically adjusting the threshold and observing the changes in the icon array and OOD

score distribution. DeepLens also helps the developer explore OOD types by clustering similar texts and visualizing keywords.

To understand OOD data, the developer can check the highlighted keywords and compare them with in-distribution (ID) data.

ABSTRACT

Machine Learning (ML) has been widely used in Natural Language
Processing (NLP) applications. A fundamental assumption in ML
is that training data and real-world data should follow a similar
distribution. However, a deployed ML model may suffer from out-
of-distribution (OOD) issues due to distribution shifts in the real-
world data. Though many algorithms have been proposed to detect
OOD data from text corpora, there is still a lack of interactive tool
support for ML developers. In this work, we propose DeepLens,
an interactive system that helps users detect and explore OOD
issues in massive text corpora. Users can efficiently explore different
OOD types in DeepLens with the help of a text clustering method.
Users can also dig into a specific text by inspecting salient words
highlighted through neuron activation analysis. In a within-subjects
user study with 24 participants, participants using DeepLens were
able to find nearly twice more types of OOD issues accurately with
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22% more confidence compared with a variant of DeepLens that
has no interaction or visualization support.
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1 INTRODUCTION

Machine Learning (ML) techniques and ML models have shown
superior performance in many applications, e.g., autonomous driv-
ing [49], virtual assistant [8], and medical diagnosis [32]. Modern
ML techniques usually assume the training data and test data follow
a similar distribution. However, such an assumption can hardly be
satisfied in the real world. Instead, data distribution shift and out-of-
distribution (OOD) samples often result in performance degradation

https://doi.org/10.1145/3544548.3580741
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of deployed ML models [17, 21, 37]. Such performance drop further
brings concerns about the reliability and trustworthiness of ML
models. In particular, failing to predict OOD samples may lead to
serious outcomes in high-stake and safety-critical applications such
as health care [32]. In 2013, Google Flu Trends (GFT) model failed
to predict the flu season, missing the peak of that flu season by
140 percent [30]. One significant factor of the failure is that GFT
did not take into account how users’ search behavior had changed
since 2012 [30]. In this case, the data distribution shifted in 2013
compared with 2012 and eventually led to poor model performance.

To alleviate the effects of OOD data, many techniques have been
proposed for OOD detection [4, 21, 33–35, 44, 58]. For a given data
instance, these techniques typically first calculate a specific score
(OOD score), and then compare it with a pre-defined threshold to
determine if the data instance is OOD. However, in practice, only
identifying OOD data is not sufficient for ML developers. For in-
stance, in the previous example of GFT, after knowing there is an
OOD issue, developers still need to dig into the OOD data and figure
out why they are considered OOD andwhat their characteristics are.
This is a time-consuming process. Though a recent technique [9]
has been proposed to address this challenge, it is only designed for
image data, not text data. Compared with images, which are more
glanceable for humans [15], more cognitive efforts are required
to read and understand text data. Without appropriate tool sup-
port, it can be challenging and time-consuming for developers to
investigate a massive amount of OOD text data at scale.

In this paper, we explore interactive tool support for helping
users quickly detect and contextualize OOD samples from large
text corpora. We present DeepLens, a novel interactive system
that enables users to detect, explore, and understand OOD issues.
DeepLens is built upon maximum softmax probability (MSP), a pop-
ular calibration-based OOD detection method for text data [4, 21].
To help users explore different types of OOD data in text corpora,
DeepLens first clusters similar OOD data by topics and then ren-
ders the frequent words in each cluster in a word cloud to help
users examine and understand the topic of each cluster. As users
delve into individual OOD instances, DeepLens highlights salient
words in each instance via neuron activation analysis method [1].
In this way, DeepLens helps users quickly understand a long text
without reading it in detail. DeepLens also renders in-distribution
and out-of-distribution data side by side to help users compare and
contrast them.

To evaluate the usability and efficiency of DeepLens, we con-
ducted a within-subjects user study with 24 programmers with
various levels of expertise in ML and NLP. We created a comparison
baseline by disabling the cluster view and the highlighting view
in DeepLens. The results show that participants using DeepLens
were able to find more types of OOD data on four different NLP
tasks. The mean difference in the number of OOD types found by
each participant using DeepLens and the baseline tool is 3.54 vs.
1.25 (Welch’s 𝑡-test: 𝑝 < 0.0001). Participants using DeepLens also
felt more confident about OOD issues they found in the ML models.
The median values are 6 vs. 5 on a 7-point Likert scale (Welch’s
𝑡-test: 𝑝 = 0.002). These results demonstrate that DeepLens can
significantly improve ML developers’ productivity when dealing
with out-of-distribution issues in NLP models.

In summary, the main contribution of this paper is DeepLens,
an interactive system that helps users detect, explore, and under-
stand OOD data in large text corpora. We have open-sourced our
system on GitHub 1. A within-subjects user study demonstrates
the effectiveness of DeepLens in detecting and analyzing different
types of OOD issues on a variety of NLP tasks.

2 BACKGROUND AND RELATEDWORK

2.1 Out-of-Distribution Issues in ML Systems

A fundamental assumption in machine learning theory is that train-
ing and test data follow a similar distribution [42]. However, after
model deployment, it is not uncommon to encounter real-world data
that is out-of-distribution compared with the training data. Previous
studies demonstrate that when feeding OOD samples, ML models
can provide erroneous predictions with high confidence [14, 45].
Such errors can have serious consequences when the predictions
inform real-world decisions such as medical diagnosis, e.g. falsely
classifying a healthy sample as pathogenic or vice versa [3, 50, 52].

Over the years, there has been an ongoing effort in trying to
understand OOD issues in ML systems. Moreno-Torres et al. [43]
present a unified framework to analyze the distribution shift. Given
a classification task X → Y, the joint probability of 𝑥 ∈ X and
𝑦 ∈ Y can be represented as 𝑝 (𝑦, 𝑥) = 𝑝 (𝑦 |𝑥)𝑝 (𝑥). Moreno-Torres
et al. [43] then categorize OOD into two types: (1) covariate shift,
where the input distribution 𝑝 (𝑥) changes, and (2) concept shift,
where the relationship between the input and class variables 𝑝 (𝑦 |𝑥)
changes. Arora et al. [4] further extend this taxonomy to NLP tasks.
They assume text data can be represented as background features
(e.g. genre) that are invariant across different labels, and seman-
tic features (e.g. sentiment words) that are discriminative for the
prediction task. Therefore, they define the change of background
features as background shift and the distribution change of semantic
features as semantic shift. In this work, we follow the OOD taxon-
omy and terminologies by Arora et al. [4], since our work focuses
on OOD issues in text data.

2.2 OOD Detection

There is a large body of literature on OOD detection in the ML
community. Most of the prior work calculates an OOD score for
each input, and uses a threshold to separate ID data from OOD data.
Hendrycks et al. [21] first propose a simple method to detect OOD
samples, representing one of the earliest attempts in this direction.
They utilize the probability of a prediction (i.e., model confidence)
as the indicator for OOD issues, in which a lower probability yields
a higher OOD score. However, since DL models often “confidently”
make errors [45], only leveraging model confidence hinders further
improvement of OOD detection. To address this issue, some recent
work proposes to train a calibrated model, so it can give predic-
tions with low confidence on OOD data. The calibrated model can
be obtained via data augmentation [22, 57, 62], adversarial train-
ing [7, 10, 20], and uncertainty modelling [5, 40]. Another line of
work to address the model confidence barrier is to leverage other
indicators for OOD detection [4, 33–35, 44, 58]. One of the repre-
sentative works is ODIN [33], which uses temperature scaling and

1https://github.com/momentum-lab-workspace/DeepLens
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input perturbation for OOD score computation. Furthermore, OOD
detection can also be achieved by estimating the ID distribution
and measuring how far the input instance is from the ID distri-
bution [26, 29, 31]. In this work, we develop DeepLens on top of
an OOD algorithm by Arora et al. [4], which utilizes maximum
softmax probability (MSP) for OOD detection in text corpora.

So far, most efforts have been put into improving the accuracy of
OOD detection algorithms. However, only providing an OOD score
and a list of OOD samples is insufficient for humans to understand
and reason about OOD data. DeepLens fills the gap by providing an
interactive system that helps developers explore OOD data detected
from large text corpora and understand their characteristics.

2.3 Interactive Support for OOD Detection

In the past two years, there has been a growing interest in providing
interactive tool support for detecting distribution change [9, 46,
47, 59–61]. OoDAnalyzer [9], an interactive system for analyzing
OOD issues in image data. It provides a grid-based visualization
that shows individual OOD images in a grid view. Furthermore, it
allows users to zoom into individual OOD instances and highlights
the parts of an image that contributes significantly to the prediction
result. The main difference between OoDAnalyzer and DeepLens is
that OoDAnalyzer focuses on image data while DeepLens focuses
on text data. Compared with text data, images are more glance-
able. Thus, the interface design in OoDAnalyzer is not applicable to
OOD analysis in text corpora. To fill the gap, DeepLens leverages
a text clustering method and also highlights salient words in indi-
vidual text documents to help users explore and understand OOD
instances.

Data drift detection is closely related to OOD detection.
Yeshchenko et al. propose Visual Drift Detection (VDD) [61], a
visualization and interaction system for detecting and analyzing
business process drift. By utilizing a set of interactive charts, VDD
presents the business process drift (event sequence data) in a time-
dependent way. Wang et al. present ConceptExplorer [59], a visual
analytics system for analyzing concept drifts from multi-source
time-series data. Yang et al. propose DriftVis [60], an visual analyt-
ics system for analyzing concept drift in streaming data. It utilizes
an incremental Gaussian mixture model to detect samples with con-
cept drift and presents prediction-level visualization that reveals
the performance change of the target model. DriftVis is specifi-
cally designed for concept drift (i.e., semantic shift in NLP), while
DeepLens does not have a specialized design for a particular type
of distribution shift and thus can be applied to both shift types.

3 USER NEEDS AND DESIGN RATIONALE

In this section, we first analyze ML practitioners’ needs for interac-
tive OOD detection based on the literature review. Then, we discuss
how our proposed system supports these needs through a system
overview.

3.1 User Needs in Detecting and Diagnosing

OOD Issues in ML

To understand the needs ofML practitioners, we conduct a literature
review of previous work that has done a formative study of OOD
detection [9, 47, 60, 61], has done a user study [46, 59], or has

discussed the challenges in handling OOD issues [38, 51]. Based on
this review, we summarize five major user needs for OOD detection.
N1: Automatically detect OOD data.Manually inspecting individ-
ual instances to identify data distribution shifts is time-consuming
and cumbersome [59, 61]. By working closely with their industry
partners, Yeshchenko et al. [61] found that industrial practitioners
demanded the distribution shift be identified promptly and pre-
cisely. Therefore, DeepLens should automatically detect OOD data
based on user-defined criteria. The expert review inWang et al. [59]
also confirmed the necessity of automated OOD detection in large
datasets.
N2: Understanding why a sample is detected as OOD. Recent
studies [38, 47, 59, 60] show that only detecting OOD samples is in-
sufficient. In practice, ML practitioners are often also eager to know
why those samples are out of distribution. For instance, Yang et
al. [60] interviewed four ML practitioners and found that, instead
of simply obtaining the detected OOD samples, ML practitioners
desired to know why and where the distribution shift occurred.
In another interview study with four data scientists, Palmeiro et
al. [47] found that data scientists wanted to know which parts of
the dataset include data shift as well as the patterns of data shift.
N3: Identifying different types of OOD data. Different OOD
instances may have different characteristics. Therefore, ML prac-
titioners want to categorize OOD data to better understand their
commonalities and variations, so that they can come up with a
more comprehensive strategy to consider the impacts brought by
data shift [9, 51, 59, 61]. For example, Wang et al. [59] highlighted
that users should be able to discriminate different types of data and
verify the distribution shift of each type. In an interview study with
both ML developers and ML users, Chen et al. [9] reported that
the ML developers and ML users both desired to visually explore
different types of OOD samples and their relationships to reduce
the samples that need to be inspected.
N4: Comparing OOD with ID data. Chen et al. [9] found that
comparing OOD samples with ID samples under the same predicted
label was helpful for users to confirm potential OOD issues. Olson
et al. [46] conducted a user study with sixtyML users and found that
users often compared OOD samples with ID samples to understand
the characteristics of OOD samples.
N5: Investigating OOD issues from both global and local per-
spectives. When inspecting OOD issues, users tend to first explore
different categories of potential OOD data and then delve into a
category of interest to compare an OOD sample with similar ID
samples [9]. Yeshchenko et al. [61] highlighted the importance of
supporting “drill-down” and “roll-up” analysis on OOD data to allow
users to flexibly investigate OOD issues from different granularity.

3.2 Design Rationale

To supportN1,DeepLens leverages a calibration-based method [21]
to automatically detect OOD data in a large text corpus. Users can
observe the percentage of OOD instances in the test data in the
Distribution View (Fig. 2 A○) and adjust to what extent an instance
should be considered as OOD via the threshold slider. To help users
better understand why some instances are detected as OOD data
(N2), DeepLens allows users to compare an OOD instance and
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Figure 2: DeepLens, an interactive system for detecting and identifying OOD samples in the text data. (A) The Distribution
View allows users to adjust thresholds and inspect OOD issues in test data dynamically. (B) The Instance View displays the

in-distribution (ID) and out-of-distribution (OOD) data in two separate interactive data grids. (C) The Cluster View displays

the clustering results and keywords for each cluster for exploring potential OOD types. (D) The Highlighting View shows the

highlighted salient words on selected data instances to ease users’ reading efforts.

an ID instance side by side and examine the commonalities and
variations between them (Fig. 2 B○). Furthermore, as some instances
are lengthy, DeepLens leverages neuron activity analysis [23] to
identify and highlight salient words in an instance, so users can
quickly grasp the underlying topic(s) in the instance (Fig. 2 D○). By
directly comparing the differences between highlighted words in an
OOD data and an ID data, users can easily identify potential topic
differences between those two instances without the necessity of
reading through the entire text document.

To assist users in identifying different types of OOD data (N3),
DeepLens clusters the detected OOD instances and renders them
in a scatter plot (Fig. 2 C○). The common words in a cluster are
visualized as a word cloud to help users understand its underlying

topics (Fig. 2 C○). This cluster view, together with the word cloud,
helps users obtain a global understanding of when and where data
shifts occur in the dataset (N5). To support the “drill-down” analysis
mentioned in (N5), DeepLens allows users to delve into a specific
cluster by clicking on a node in that cluster or a cluster legend. The
instance view will be filtered accordingly. To support the “roll-up”
analysis mentioned in (N5), DeepLens highlights the user-selected
instances in the cluster view, so users can easily see where the
selected instances are in the global view. Finally, to support N4,
DeepLens allows users to filter the instances by prediction labels
in the Instance View and then select OOD and ID instances with the
same prediction label to compare side-by-side. The salient word
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Figure 3: Users can adjust the threshold of the OOD score and inspect OOD issues in the Distribution View.

highlighting feature also helps users quickly see the commonalities
and variations between the OOD and ID instances.

4 DESIGN AND IMPLEMENTATION

In this section, we follow the 3-step usage of DeepLens (Fig. 1) to
introduce its design and implementation: (1) detect OOD issues, (2)
explore OOD types, and (3) understand OOD data.

4.1 Interactive OOD Text Detection

OODDetectionMethod.Given a data instance 𝑥 , an OOD detection
method first computes an OOD score 𝑠 (𝑥). If 𝑠 (𝑥) > 𝜖 (a pre-defined
threshold), then 𝑥 is considered as an OOD sample. DeepLens
leverages a calibration-based method, MSP (maximum softmax
probability) [21], to compute the OOD score. A higher MSP means
the model is highly confident with the prediction, thus a lower MSP
indicates the given data instance 𝑥 is more likely to be an OOD
sample. Given a probabilistic classifier C,

𝑠 (𝑥) = 1 −max
𝑘
C(𝑦 = 𝑘 |𝑥) (1)

where 𝑘 ∈ 1, . . . , 𝑁 denotes class label 𝑘 and 𝑦 denotes the pre-
diction of 𝐶 . Note that a probabilistic classifier typically exists in
an NLP model even if it is not for classification. For instance, a
probabilistic classifier exists when projecting hidden states into the
vocabulary.
Distribution View. DeepLens allows users to adjust the threshold
of OOD detection dynamically via adjusting the slider (Fig. 3 A○).
When the threshold is updated, the icon arrays (Fig. 3 B○) will
also be updated accordingly. We chose to use icon arrays since it
provides a discrete-event representation and has been proven to
lead to more accurate interpretation of numbers and require lower

numeracy, compared with alternative visualizations such as pie
charts and bar charts [13, 28]. Users can inspect icon arrays at a
glance to quickly understand how many OOD samples might exist
in the test data. To validate if an optimal threshold is set, users can
check the OOD score distribution (Fig. 3 C○) across training and test
data. Ideally, an optimal threshold should distinguish ID and OOD
data as accurately as possible. DeepLens provides a pre-computed
threshold to help non-experts efficiently decide the threshold.
Instance View. This view contains two separate scrollable data
grids of the ID and OOD data (Fig. 4). When users change the thresh-
old of the OOD score, the instance view will update accordingly.
The rows of each data grid are individual data instances, and the
columns are: index, model prediction result, clustering result, raw
text, and OOD score of each data instance. By default, the data grids
including OOD data and ID data are sorted in descending and as-
cending orders according to OOD scores, respectively. Users can
also filter, search, or sort each data grid to explore a data instance.

4.2 OOD Text Categorization and Exploration

Text Clustering. To help users efficiently explore topics of detected
OOD samples, DeepLens uses a text clustering algorithm to cate-
gorize different types of texts. Algorithm 1 depicts the clustering
algorithm. Given an NLP model𝑀 , the algorithm first extracts hid-
den features for each text of new test data (Line 1-5). While the
extracted features F are usually sparse and high-dimensional vec-
tors, DeepLens applies PCA (principal component analysis) [27] to
reduce their dimensions to 𝑝 (line 6). Then, DeepLens uses KMeans
clustering algorithm [36] to cluster processed hidden features F𝑝
(Line 7-9). To decide an optimal number of clusters 𝑛𝑜𝑝𝑡 , DeepLens
leverages Silhouette method [53] (Line 10). During implementation,
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Figure 4: Interaction with the Instance View.

Algorithm 1: A semantic text clustering algorithm.
Input: an NLP model𝑀 , new test data X, maximum

number of clusters 𝑁𝑚𝑎𝑥 , PCA dimension 𝑝

Output: cluster label Y
1 F ← {};
2 for 𝑥 in X do

3 𝑓 ← extract_features(𝑀,𝑥);
4 F .append(𝑓 );
5 end

6 F𝑝 ← PCA(F , 𝑝);
7 for 𝑛 ← 1, . . . , 𝑁𝑚𝑎𝑥 do

8 Y𝑛 = KMeans(Fp, n);
9 end

10 𝑛𝑜𝑝𝑡 ← max
𝑛

Silhouette(Y𝑛, F𝑝 );
11 return Y𝑛𝑜𝑝𝑡 ;

we set the maximum number of clusters as 𝑁𝑚𝑎𝑥 = 200, and the
PCA dimension as 𝑝 = 128. These numbers are decided empirically.
Keywords Summarization. After each cluster is determined,
DeepLens summarizes a few keywords from an individual clus-
ter to help users identify its potential topic(s). To achieve this,
DeepLens first filters out “stop words” [6] from each data and then
uses CountVectorizer algorithm [48] to extract keywords. For each
cluster, DeepLens displays top-10 frequent keywords as a word
cloud. Through inspecting the word cloud, users can quickly under-
stand what kind of text patterns the selected cluster might include.
Cluster View. DeepLens integrates the clustering results and sum-
marized keywords in the cluster view (Fig. 5). The cluster view
consists of a scatter plot and a word cloud. Each node in the scatter
plot represents an individual data instance. The position of each
node is determined by the first three components of the hidden
features of each text after PCA. The color assigned to each node
represents the cluster index. When users hover on a node, a tool-tip
will pop up showing the prediction label and OOD score of the cor-
responding data instance (Fig. 5 B○). When users click on a node,

the corresponding data instance will also be selected in the instance
view. These features allow users to contextualize the clustering
results with specific data instances and texts. Users can also focus
on one cluster by clicking on the legend (Fig. 5 A○). Once a cluster
is selected, DeepLens will update the word cloud (Fig. 5 C○) and
filter out data excluded in the selected cluster in the instance view.

4.3 OOD Text Explanation

Salient Words Selection. The previous sections introduce how
users can efficiently inspect OOD issues and identify potential
OOD types. By inspecting the cluster view, users might already
have hypotheses about potential OOD types and their topics based
on several data instances. DeepLens further supports digging into
specific instance(s). To achieve this, DeepLens uses neuron acti-
vation analysis [23] to select salient words in a text. By checking
small groups of highlighted words, users can avoid reading a long
paragraph of text in detail. We describe the algorithm of salient
words selection in Algorithm 2. At a high level, DeepLens leverages
ecco [1] to extract and factorize neuron activation information.
For a given text 𝑥 , DeepLens first extract neuron activation values
A by passing it through a large pre-trained language model 𝑀
(Line 2). Then DeepLens uses Non-negative matrix factorization to
factorize the extracted activation values into 𝑛 components (Line
3). In this way, DeepLens can group similar words in a text into
𝑛 groups. To further reduce users’ mental demands, we filter out
groups containing stop words or special tokens (e.g., punctuation)
(Line 4-14). Finally, for each group, DeepLens only highlights 10
words with the highest activation values. This helps preserve only
the most important words in a group. In our implementation, we
use a pre-trained BERT [12] released on HuggingFace 2 without any
fine-tuning. The number of factors 𝑛 is set to 10, and only top-10
salient words are highlighted.
Highlighting View. In this view, DeepLens leverages the visual-
ization of ecco [1] to visualize highlighted salient words (Fig. 6).
The sparklines on the left of each text box visualize the positions of
similar salient words in the text. Each sparkline represents a group

2https://huggingface.co/bert-base-uncased
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Figure 5: Users can inspect and interact with text clustering results in the Cluster View.

Algorithm 2: Salient words selection.
Input: A text input 𝑥 , a pre-trained language model𝑀 ,

number of factors 𝑛, number of words in text 𝑙
Output: Highlighted keywords S

1 S ← ∅;
2 A ← get_activation(𝑀,𝑥);
3 S̃ ← NMF(A, 𝑛);
4 for 𝑖 ← 1, . . . , 𝑛;
5 do

6 for 𝑗 ← 1, . . . , 𝑙 ;
7 do

8 if 𝑥 𝑗 is stop word or special tokens then
9 S𝑖 ← ∅;

10 else

11 S ← S ⋃ S̃𝑖 ;
12 end

13 end

14 end

15 return S;

of similar salient words. The color of a sparkline is the same as the
color of the corresponding group of salient words. The x-axis is the
index of a word in the text, and the y-axis indicates the saliency
score of a word. Users can hover on different lines to inspect dif-
ferent groups of salient words. For each group of salient words, a
darker color indicates a higher activation value. While previous
studies have shown that it is important to allow users to understand
a concept through a contrastive way [41], DeepLens allows users to
pin multiple ID or OOD instances at the same time to contextualize
the OOD topics. When users click a node in the cluster view or an

instance in the instance view, this instance will be pinned at the top
of the instance view. At the same time, the salient words of each
selected instance will be displayed in the highlighting view.

4.4 Implementation

We implement and deploy DeepLens as a web application. The
interface of DeepLens (Fig. 2) is implementedwithMaterial UI 3. We
use D3.js 4 for visualizing scatter plots. All machine learning models
were implemented with PyTorch and Scikit-learn and trained on
one NVIDIA A6000 GPU. We deployed DeepLens on an AWS EC2
for ease of access during the user study.

5 USAGE SCENARIO

Suppose Alice is amodel developer and she has trained anMLmodel
to classify text documents into two different topics: IT (informa-
tion technology) and Fundamental Science. Her model achieves 94%
accuracy on the training data. However, her model’s performance
significantly drops when Alice deploys it online. Alice suspects such
performance degradation is caused by out-of-distribution (OOD)
issues in the new data. Alice runs an OOD detection program on the
new data and finds that 49% of the new data (400 data instances) are
detected as OOD data. Alice wants to understand the characteris-
tics of these data, so she can strategically apply data augmentation
techniques to improve the training data. However, she finds it time-
consuming tomanually check the 400 OOD samples and understand
why they are categorized as OOD. Furthermore, since each text
document is lengthy, Alice finds it hard to glance it over and quickly
understand the gist of the document.

Alice decides to giveDeepLens a try. She first checks theDistribu-
tion View, where two icon arrays (Fig. 3 B○) showing the proportion

3https://mui.com
4https://d3js.org
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Figure 6: The Highlighting View helps users quickly understand specific ID/OOD data instances.

of in-distribution and out-of-distribution samples in training and
test data, respectively. She finds that compared with training data,
a large proportion of test data are out-of-distribution samples. She
also attends to the OOD score distribution (Fig. 3 C○), where the
OOD score distribution of training and test data are different. She
confirms that OOD samples exist in her test data and could have
caused her model’s performance degradation.

Alice wonders what kinds of instances are detected as OOD
samples by DeepLens. Therefore she turns to the Instance View
(Fig. 2 B○), where the OOD and ID data are displayed in two separate
data grids. Alice finds that instances with high OOD scores are very
suspicious. Since browsing each data instance will take too much
time, Alice decides to switch to the Cluster View (Fig. 2 C○) to get
an overview first. This view contains a scatter plot where each
data instance is rendered as a node, and similar data instances are
clustered and colored with the same color. By default, the Cluster
View only shows OOD data. Alice finds it obvious that each cluster
contains a different number of OOD nodes. Then she explores the
exact number of OOD nodes in each cluster by hovering over the
legends. There are many OOD nodes in Cluster 1 and 2, but much
fewer in Cluster 0 and 3 (Fig. 5 A○). Alice thinks Cluster 1 and 2
may include two new OOD types.

Now Alice wants to take a deeper look at Cluster 1. By clicking
the corresponding legend, the Cluster View is updated and only
displays OOD nodes of Cluster 1 (Fig. 5 B○). The Instance View
also filters out the data instances that are not in Cluster 1. The
word cloud shows that Cluster 1 has several frequent keywords, e.g.,
“players”, “game”, “team” (Fig. 5 C○). Alice realizes the topic of this
cluster could be Sports. This is an obvious sign of a new category in
the OOD data, which is not initially included in the training data.

Alice clicks a node in Cluster 1. Then, the selected instance is
pinned at the top of the Instance View. While the selected sentence

is very long and takes time to read, Alice decides to check the
highlighted words in theHighlighting View (Fig. 6 B○). These salient
words help her focus on the essential information and ignore the
unnecessarywords in the sentence. Alice notices that there are a few
words highlighted, e.g., “defensive”, “power play”. These keywords
further confirm Alice’s belief that a new category is Sports.

To further validate her belief, Alice continues to check whether
this category exists in the in-distribution data. She clicks on the
first sentence in the ID table of the Instance View, which is pre-
dicted as Fundamental Science (Fig. 6 A○). The salient words high-
lighted in this sentence are: “medical”, “stones”, “mitigate”, and
“treat” (Fig. 6 C○). All these words are usually from Fundamental
Science articles. Then, Alice clicks into several other OOD instances
near the current OOD instance and confirms that Sports is a new
topic in the OOD data.

6 USER STUDY

To evaluate the effectiveness and usability of DeepLens, we con-
ducted a within-subjects user study with 24 programmers with var-
ious levels of machine learning expertise. To better understand the
value of proposed features in DeepLens, we compared DeepLens
with a variant of DeepLens as the baseline by disabling the Cluster
View and the Highlighting View.

6.1 Participants

We recruited 24 participants through mailing lists of the ECE and
CS departments at the University of Alberta 5. All participants have
basic knowledge about machine learning. 10 participants were Mas-
ter students, 10 were Ph.D. students, 3 were professional developers,
and 1 was a data scientist. Participants were asked to self-report
their machine learning expertise. 12 participants had 2-5 years of
5This human-participated study is approved by the university’s research ethics office.



DeepLens: Interactive Out-of-distribution Data Detection in NLP Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Designed tasks for the user study.

# Task Description ID data OOD data Distribution shift type

1 Topic classification Predict topic of a paragraph DBPedia DBPedia Semantic shift
of text from Wikipedia. top-4 [64]† rest [64]†

2 Sentiment analysis Predict sentiment of a IMDB [39] Yelp [64] Background shift
review text.

3 Emotion recognition Recognize the emotion Emotion Emotion Semantic shift
from a given text. Negative-2 [54]‡ rest [54]‡

4 Fake news detection Detect if a news article PolitiFact [55] COVID-19 Background shift
is real or fake. Fake News [11]

GossipCop [55]
† DBPedia dataset has 14 classes. We denote DBPedia top-4 as a subset including the first 4 classes (Company, Educational Ins-
titution, Artist, and Athlete) according to class IDs, and DBPedia rest as a subset including the other 10 classes.
‡ Emotion dataset has 6 classes. We denote Emotion Negative-2 as a subset including 2 negative Emotion classes (Sadness and
Fear), and Emotion rest as a subset including the other 4 classes.

experience, 1 had more than 5 years, and 11 only had 1 year. Regard-
ing NLP experience, 5 participants had 2-5 years of experience, and
19 only had 1 year. 20 participants mentioned that they had heard
about out-of-distribution or distribution shift problems before. All
study sessions were conducted on Zoom. Both DeepLens and base-
line were deployed as web applications, therefore participants were
able to access our study sessions from their own PCs.

6.2 Tasks

We designed four tasks that cover different kinds of distribution
shifts in the NLP domain. Table 1 shows the details of each user
study task. When designing tasks, we follow these requirements:
(1) the tasks should be representative ones in the NLP domain and
(2) the tasks should cover two different types of distribution shift.
To achieve these goals, we collected four tasks from prior work
about OOD detection in NLP and well-known public benchmarks
for NLP models. For each task, we adopt a BERT model [12] as
the backbone and fine-tune its performance on the ID data. For
a fair comparison, the baseline tool and DeepLens use the same
pre-computed OOD threshold on each task. More details such as
models’ training settings and example interfaces for each task can
be found in Appendix A.

6.3 Protocol

Each user study session took about 60 minutes. At the beginning
of each session, we asked participants for their consent to record.
Participants were assigned two tasks about identifying OOD issues,
one to be completed withDeepLens and the other to be the baseline
tool. To mitigate the learning effect, both task assignment order and
tool assignment order were counterbalanced across participants.
In total, 6 participants experienced each task. Participants were
asked to watch a 5-min tutorial video of the assigned tool before
starting each task, followed by a 5-min practice period to familiarize
themselves with the tool. Then, participants were given 20 minutes
to use the assigned tool to inspect and identify OOD issues within
the given model and dataset. In particular, participants were asked
to answer/report:
(1) What kind of data distribution shift does it belong to?

(2) How many different types of OOD data did you find?
(3) For each different type of OOD, please explain why you think

it is OOD and list the indexes of the OOD instance that belong
to this type.
After completing each task, participants filled out a post-task

survey to give feedback about what they liked or disliked. Partici-
pants were also asked to answer five NASA Task Load Index (TLX)
questions [19] as a part of the post-task survey. After completing
both two tasks, participants filled out a final survey, where they di-
rectly compared two assigned tools. At the end of the study session,
each participant received a $25 Amazon gift card as compensation
for their time.

7 RESULTS

In this section, we report and analyze the difference in participants’
performance when using DeepLens and the baseline tool. We de-
note the participant as P# in the following.

7.1 User Performance

Table 2 shows participants’ performance on four tasks of identify-
ing OOD issues. We found that all 24 participants using DeepLens
correctly identified the type of data distribution shift (i.e., back-
ground vs. semantic shift) in the assigned model, while 2 out of 24
participants using the baseline method failed.

To further assess participants’ performance, we manually in-
spected participants’ answers to check their correctness. A correct
OOD type should (1) include the word(s) that are representative
of a group of data instances, and (2) be significantly different from
ID data. Overall, we found that participants using DeepLens were
able to find more types of OOD on all four different tasks compared
with participants using the baseline tool. Regarding Task 1 and
Task 3 (semantic shift), the average number of OOD types found
by each participant using DeepLens is 7 and 3.5 respectively. By
contrast, the average number is 2.3 and 1.2 respectively when using
the baseline tool. The Welch’s 𝑡-test suggests that the performance
differences are significant in both cases (𝑝-value < 0.001). Regard-
ing Task 2 and Task 4 (background shift), most participants using
the baseline tool were only able to find 1 type of OOD (mean: 1
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Table 2: User performance in four different tasks.

Task 1 Task 2 Task 3 Task 4

Semantic Shift Background Shift Semantic Shift Background Shift
Baseline DeepLens Baseline DeepLens Baseline DeepLens Baseline DeepLens

# of participants correctly 5 6 5 6 6 6 6 6identified shift type
# of correct Min 1/10 4/10 1/2 1/2 0/4 3/4 0/2 2/2
OOD Types Med 2/10 7.5/10 1/2 2/2 1/4 3.5/4 0.5/2 2/2
found per Max 4/10 8/10 1/2 2/2 2/4 4/4 1/2 2/2
participant Mean 2.3/10 7/10 1/2 1.7/2 1.2/4 3.5/4 0.5/2 2/2

Δ = 4.7 Δ = 0.7 Δ = 2.3 Δ = 1.5Welch’s 𝑡 -test
𝑡 = 6.14, 𝑝 < 0.001 𝑡 = 3.16, 𝑝 = 0.010 𝑡 = 6.14, 𝑝 < 0.001 𝑡 = 6.71, 𝑝 = 0.001

and 0.5 respectively). By contrast, participants using DeepLens
were able to find 1.7 and 2 types of OOD on average in these two
tasks respectively. TheWelch’s 𝑡-test suggests that the performance
differences are significant (𝑝-value = 0.010 and 𝑝-value = 0.001).

We analyzed the post-task survey responses and the recordings
to understand why participants using DeepLens performed bet-
ter. We found that DeepLens users’ success mainly come from the
Cluster View and the Highlighting View. First, the cluster view sig-
nificantly sped up the process of finding OOD types. 23 out of 24
participants had heavily utilized the clustering view to explore OOD
data. By contrast, participants using the baseline tool had to inspect
OOD instances one by one. P16 wrote, “[when using the baseline
tool], it is tedious to go through all the data point one by one especially
when there are a lot of them.” In the post-task survey, 22 out of 24
participants also agreed that the clustering results were helpful.
P17 said, “by going through clusters, I can find trends faster than
by going through individual data points.” Besides, the summarized
keywords of each cluster were also found helpful. Based on the
recordings, 19 out of 24 participants started their exploration from
these keywords. By contrast, participants using the baseline tool
usually started their exploration by randomly picking an instance.
P20 said, “[when using DeepLens,] I can use the keywords extracted in
the cluster and put that in the filter to find more OOD instances of the
same type.” P21 commented, “In my using experience, [DeepLens]
helps me a lot in quickly summarizing background shift keywords.

In addition, the highlighting view in DeepLens helped partici-
pants avoid incorrect OOD types. In our user study, themedian num-
ber of incorrect OOD types found per participant using DeepLens
is 0, while the corresponding number of participants using the
baseline tool is 1. The mean difference of incorrect OOD types is
0.52 vs. 1.64 (Welch’s 𝑡-test: 𝑝 = 0.009). One specific reason is that
when using DeepLens, participants were able to compare the OOD
data with the ID data to confirm a new OOD type. In the post-task
survey, 17 out of 24 participants marked the comparison of ID and
OOD data as helpful. Furthermore, when comparing the ID and
OOD data, the highlighted keywords also helped participants avoid
misunderstanding a long text. In the post-task survey, 18 out of 24
participants agreed that seeing the highlighted keywords was help-
ful. P9 said, “when verifying my hypothesis about whether a certain
sentence belongs to OOD data, DeepLens is helpful because it shows
several highlighted keywords and reduces my time consumption.” By
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Figure 7: Users’ self-ratings about their task performance.

contrast, P11 commented, “It is not easy to read the whole text [when
using the baseline tool].”

We have also further analyzed the impact of the OOD threshold
adjustment feature on user performance. We found that only two
users (P6 and P14) had tried to adjust the threshold, and they even-
tually reset it to the pre-computed one. A plausible explanation
is that the default threshold has already provided a good starting
point for users to investigate OOD issues. Thus, we believe the OOD
threshold in the distribution view may have little impact on user
performance. Since this threshold adjustment feature is present in
both conditions, the better user performance of DeepLens comes
directly from the cluster and highlighting views.

7.2 User Confidence and Cognitive Overhead

In the post-task survey, participants self-reported their confidence
about OOD issues they identified with help of the assigned tool in
two different 7-point Likert scale questions. Figure 7 shows partici-
pants’ assessments when using DeepLens and the baseline tool. We
found that participants using DeepLens were more confident about
the OOD issues they found, where the median confidence ratings
are 6 vs. 5. The mean difference is 1.12 (6.17 vs. 5.04), which is statis-
tically significant (Welch’s 𝑡-test: 𝑝-value = 0.002). This confidence
improvement was largely attributed to DeepLens’s Cluster View.
P5 commented, “The automatic clustering function works quite well,
and the keyword summary is quite useful to have an overview.” P16
said, “By clustering the data, DeepLens makes keywords in the word
cloud better indicators when identifying OOD issues.
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Figure 8 shows participants’ ratings on the five cognitive fac-
tors of the NASA TLX questionnaire. Though DeepLens has more
features and renders more information, we find that there was no
significant difference when using DeepLens and the baseline tool
in terms of mental demand, hurry, effort, and frustration (Welch’s
𝑡-test: 𝑝 = 0.22, 𝑝 = 0.24, 𝑝 = 0.26, 𝑝 = 0.75). However, participants
using DeepLens felt they have better performance compared with
participants using the baseline tool (mean difference: 0.88, Welch’s
𝑡-test: 𝑝 = 0.049). This indicates that DeepLens is more effective
and useful when helping users inspect and identify OOD issues in
an ML model compared with the baseline tool.

7.3 User Ratings of Individual Features

In the post-task survey, participants rated the key features of
DeepLens. Among 24 participants, 23 participants indicated that
they would like to use DeepLens when solving OOD problems
in their own ML models, while 1 participant stayed neutral. The
median rating is 6 on a 7-point Likert scale (1—I don’t want to use it
at all, 7—I will definitely use it). As shown in Fig. 9, participants felt
DeepLens’s interface and interactive features intuitive and helpful.
The Cluster View is most appreciated by participants. 22 out of 24
participants agreed that “it was helpful to see the clustering results.”
The median rating of the cluster view is 6. P17 commented, “I like
that it [DeepLens] had clustering, for instance, it was super quick to
find "covid" and "entertainment" OOD categories using this feature.”
P20 commented, “DeepLens has the cluster and keyword visualiza-
tion which can help me identify a type of OOD quickly.” Besides,
18 out of 24 participants agreed that “seeing highlighted keywords
was helpful.” The median rating of the Highlighting View is 6.
P24 commented in the post-task survey, “[DeepLens] brings me less
reading and easy to focus on the details” 17 out of 24 participants
also found comparing ID and OOD data helpful (median rating: 6).

7.4 User Preference and Feedback

In the final survey, participants self-reported their preference be-
tween DeepLens and the baseline tool (Figure 10). 23 out of 24
participants reported that DeepLens was more helpful (median
rating: 6) and they preferred to use it in practice (median rating:
6). We coded participants’ responses to this question and identi-
fied 2 different themes. First, 17 participants mentioned that the

Cluster View makes it easier when identifying and analyzing OOD
issues. P23 commented, “keywords [in the cluster view] are useful
when facing a large dataset.” P13 said, “[the cluster view] gives a
visual representation of the data, which makes it easier to identify
the OOD data.” Second, 5 participants credited their success to the
Highlighting View. P9 said, “highlighted keywords reduce my time
consumption and make it easy to tell whether a data instance is OOD.”

Participants also pointed out some limitations in the current form
of DeepLens. 2 participants commented that it would be better if
the keywords summarization in DeepLens could be improved. P21
said, “there are some meaning-less high-frequency words which might
disturb.” 4 participants suggested improving the usability of filters
in the instance view, e.g., by allowing users to add multiple filter
conditions at the same time. 1 participant mentioned that a semantic
word search function (i.e., matching semantically similar words
instead of identical ones) would assist their exploration process.

8 DISCUSSION

8.1 Design Implications

The user study results suggest that, with the help of DeepLens,
users are able to find more types of OOD data with more confi-
dence compared with using the baseline tool. Though addressing
OOD issues is an urgent topic for deploying safe and reliable AI
services [52], most efforts have been devoted to improving the
algorithm accuracy of OOD detection. Our work indicates that
only detecting OOD samples is not sufficient for improving model
developers’ productivity, especially when the dataset is large and
the types of OOD are diverse. It is equally important to facilitate
developers to understand and explore different types of OOD data
in large text corpora. Once developers have gained deep insights
of the OOD data in their datasets, they can further make strategic
decisions to improve the model, e.g., data augmentation or selection
for model retraining.

During the continuous delivery of machine learning models, the
number of newly collected data can be massive. To reduce the cog-
nitive effort of exploring different types of OOD instances in the
new data, it is essential to summarize a small number of potential
OOD types for developers. DeepLens addresses this by leveraging
a text clustering algorithm. Furthermore, the interactive cluster
exploration support in DeepLens preserves the user’s control over
verifying each type of OOD data. This is aligned with one of the
human-AI interaction guidelines—providing several suggestions in-
stead of fully automating the process [2]. Based on the user study
results, we find that such a semi-automated process of exploring
OOD data improves participants’ performance and confidence.

While clustering results do not directly tell users what exactly an
OOD type is, the summarized keywords from each cluster serve as
the starting point for exploration. In the final-study survey of our
user study, 7 out of 23 participants who preferred to use DeepLens
in practice explicitly mentioned how summarized keywords had
assisted them. Previous work [9] has shown that one important re-
quirement when designing an interactive system for OOD detection
in image data is examining OOD samples in the context of normal
samples. DeepLens supports this by allowing users to compare ID
text and OOD text side by side. Furthermore, compared with image
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data, text documents are less glanceable. Therefore, DeepLens high-
lights the salient words in each text document to help developers
quickly grasp the gist of each document.

8.2 Target User Groups and Use Cases

DeepLens is designed for users who know ML but are not familiar
with OOD issues. In our user study, most participants have heard
about OOD issues but have not worked on OOD issues before. 4 out
of 24 participants even reported that they had never heard about
OOD before. Our user study results suggest that these participants
performed better when using DeepLens compared with using the
baseline tool (mean number of OOD types found per participant:
3.5 vs. 1.3, Welch’s 𝑡-test: 𝑝 < 0.0001). Furthermore, they also
felt more confident with the OOD issues they identified (median
rating of confidence: 6 vs. 5). While experts may be more likely to
identify OOD types by reading raw text data, they still appreciated
DeepLens since it automates some of their work. For instance,
the clustering in DeepLens automates the process of categorizing
similar texts for them. P17 wrote, “by going through these clusters, I
can find trends faster than by going through individual data points.”

P5 commented, “DeepLens automated some of the manual work, and
I found that my productivity is improved. I can get more work done
within the same amount of time.”

DeepLens is specifically designed for debugging OOD issues
for NLP models. Therefore, our findings and design implications
cannot be generalized to other kinds of ML issues, such as gradient
vanishing. In addition, DeepLens can also be deployed as an online
tool to continuously monitor potential data distribution shifts for
deployed models.

8.3 Limitations and Future Work

In addition to the limitations and suggestions pointed out by our
user study participants (Sec. 7.4), there are several other limitations
to our user study design and system.
User Study Baseline. In our current form of user study, a vari-
ant of DeepLens was created as the baseline method by disabling
the cluster view and the highlighting view. However, this cannot
distinguish the contribution of individual features to user perfor-
mance improvement. One can consider creating more variants of
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DeepLens by disabling individual features as the comparison base-
lines. One can also consider instrumenting the tool and measuring
the utility rate of each feature during user study sessions.
Limited NLP Tasks. Our user study cannot confirm whether
DeepLens works for all types of NLP tasks. To comprehensively
evaluate the usefulness of DeepLens, one can consider using
DeepLens to identify OOD issues in more diverse NLP tasks, e.g.,
question answering and natural language inference.
Accuracy of OOD Detection. Currently, DeepLens leverages
MSP [4] as the OOD detection algorithm. Though MSP has been
proven effective in several NLP tasks [4], it may not always be
applicable to other kinds of NLP tasks or models. Since the design
of DeepLens is not limited to a specific type of OOD detection
algorithm, one future direction could be to integrate more OOD de-
tection algorithms to DeepLens and allow users to switch between
different algorithms.
Scalability Issue. Based on our user study results, DeepLens can
handle 1,000-4,500 data points. However, once the data is scaled
up (e.g., millions of data points), nodes in the cluster view may
overlap with each other. To address this issue, one can leverage
more advanced visualization techniques such as Bubble Treemaps
[18] to visualize clustering results hierarchically.
Alternative Algorithms and Design. Our cluster view can be
further improved by using more advanced dimension reduction
and clustering algorithms. In the current version of DeepLens, we
choose PCA for dimension reduction and K-Means for text cluster-
ing since they are classical and common choices. However, more ad-
vanced dimension reduction methods, e.g., t-SNE [24], Isomap [56]
could potentially lead to better dimension reduction results. Be-
sides, our text clustering can also be improved with methods that
are specialized for topic modeling, e.g. ConceptScope [63] and Top-
icNets [16]. Finally, our highlighting view can potentially be im-
proved by replacing neuron activation analysis with other interac-
tive tools for selecting and visualizing salient words in text data,
e.g., exBERT [25].

9 CONCLUSION

In this paper, we present a novel interactive system, DeepLens,
to help ML developers detect, explore, and understand potential
OOD (out-of-distribution) issues in NLP models. DeepLens lever-
ages a text clustering algorithm to help users efficiently identify
and explore potential types of OOD in large-scale text data. Fur-
thermore, DeepLens integrates a neuron activation analysis-based
algorithm to highlight salient words in an individual data instance
to help users quickly understand a text without reading it in detail.
We implemented DeepLens as a web application and conducted a
within-subjects user study with 24 ML developers on four different
NLP tasks. The results show that with the help of DeepLens, de-
velopers were able to have a better understanding of OOD issues
in ML models and identify more types of OOD data confidently
compared with using the baseline tool. In the end, we discuss the
design implications from DeepLens and propose several promising
future directions.
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A TASKS FOR USER STUDY

A.1 NLP Task 1: Topic Classification

DBPedia dataset extracts structured content from the information
created in the Wikipedia project. In this task, we use DBPedia-14,
collected by picking 14 non-overlapping topics from Wikipedia in
2014. We use examples from the first 4 classes as ID data and the
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rest as OOD data. To simulate real-world data with semantic shift,
we sample 1000 instances from the test splits of 14 topics.
In-distribution Data ID data contains 300 samples and 4 topics:
Company, Educational Institution, Artist, and Athlete.
Out-of-distribution Data OOD data contains 700 samples and 10
topics: Office Holder, Mean of Transportation, Building, Natural
Place, Village, Animal, Plant, Album, Film, and Written Work.
ModelWe fine-tune the BERT model for 1 epoch on the training
split of ID data with a learning rate of 5 × 10−5 and a batch size of
16. It achieves 98.5% accuracy on the validation splits of ID data
and 28% accuracy on the test data.

A.2 NLP Task 2: Sentiment Analysis

In this task, we use IMDB datasets as ID data and Yelp Polarity
binary sentiment classification datasets as OOD data. The IMDB
dataset contains movie reviews. The Yelp polarity dataset is formed
by reviews for different businesses. Both IMDB and Yelp datasets
have two labels Positive and Negative to predict the sentiment of
the reviews. To create online data with background shift, we sample
1000 instances from both IMDB and Yelp test splits.
In-distribution Data 495 samples of movie reviews from IMDB
dataset.
Out-of-distribution Data 505 samples of business reviews from
Yelp dataset.
ModelWe fine-tune the BERT model for 1 epoch on the training
split of ID data with a learning rate of 5 × 10−5 and a batch size of
16. It achieves 93.5% accuracy on the validation splits of ID data
and 89% accuracy on the test data.

A.3 NLP Task 3: Emotion Recognition

The six basic emotions included in the Emotion dataset are Sadness,
Fear, Joy, Anger, Surprise, and Love. The source of the dataset
is English Twitter Messages. There are 2 columns in the dataset,

mapping to emotion index (0 to 5) and text. We use examples from
the Sadness and Fear classes as ID data and the rest as OOD data.
To create online data with semantic shift, we sample 1000 instances
from 6 topics’ test splits.
In-distribution Data ID data contains 644 samples and 2 emotions:
Sadness and Fear.
Out-of-distribution Data OOD data contains 356 samples and 4
emotions: Joy, Anger, Surprise, and Love.
Model We fine-tune the BERT model for 4 epochs on the training
split of ID data with a learning rate of 2 × 10−5 and a batch size of
32. It achieves 99.2% accuracy on the validation splits of ID data
and 31% accuracy on the test data.

A.4 NLP Task 4: Fake News Detection

In this task, we design a background shift scenario that involves
fakeness detection on different types of news. FakeNewsNet is a
dataset collected from two fact-checking websites: GossipCop and
PolitiFact. It contains news with labels indicating its validity an-
notated by professional journalists and experts. PolitiFact contains
news related to U.S. politics and GossipCop is formed by entertain-
ment news and gossip news. Besides, we also use the COVID-19
Fake News dataset in this task. It contains COVID-19-related news
extracted from social media such as Facebook, Twitter, etc. We
use PolitiFact data as ID data. Then we combine GossipCop and
COVID-19 Fake News datasets as OOD data. To create online data
with background shift, we sample 4500 instances from PolitiFact,
GossipCop, and COVID-19 Fake News test splits.
In-distribution Data 2000 samples of news related to U.S. politics.
Out-of-distribution Data 2500 samples of news related to gossip
and COVID-19.
Model We fine-tune the BERT model for 3 epochs on the training
split of ID data with a learning rate of 5 × 10−5 and a batch size of
16. It achieves 89.5% accuracy on the validation splits of ID data
and 67% accuracy on the test data.
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Figure A1: Interface of DeepLens for task 1.

Figure A2: Interface of DeepLens for task 2.
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Figure A3: Interface of DeepLens for task 3.

Figure A4: Interface of DeepLens for task 4.
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