
Critics: An Interactive Code Review Tool for Searching and
Inspecting Systematic Changes

Tianyi Zhang∗ Myoungkyu Song† Miryung Kim∗
∗University of California, Los Angeles, USA †University of Texas at Austin, USA

tianyi.zhang@cs.ucla.edu, mksong1117@utexas.edu, miryung@cs.ucla.edu

ABSTRACT
During peer code reviews, developers often examine pro-
gram differences. When using existing program differenc-
ing tools, it is difficult for developers to inspect systematic
changes—similar, related changes that are scattered across
multiple files. Developers cannot easily answer questions
such as “what other code locations changed similar to this
change?” and “are there any other locations that are similar
to this code but are not updated?” In this paper, we demon-
strate Critics, an Eclipse plug-in that assists developers in
inspecting systematic changes. It (1) allows developers to
customize a context-aware change template, (2) searches
for systematic changes using the template, and (3) detects
missing or inconsistent edits. Developers can interactively
refine the customized change template to see correspond-
ing search results. Critics has potential to improve devel-
oper productivity in inspecting large, scattered edits during
code reviews. The tool’s demonstration video is available at
https://www.youtube.com/watch?v=F2D7t_Z5rhk

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environme-
nts—Integrated Environments

General Terms
Design, Experimentation, and Measurement

Keywords
Software evolution, program differencing, code reviews

1. INTRODUCTION
Peer code reviews are widely used quality assurance ac-

tivities in software development [1, 2]. During code reviews,
developers spend a significant amount of time and effort
to comprehend and inspect code changes [3]. When code
changes involve systematic edits—similar but not identical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

Figure 1: An overview of Critics Eclipse plug-in

changes to multiple contexts, developers may find it difficult
to ensure that all locations are updated correctly and that
there are no missing updates.

The ubiquitous program differencing tool diff computes
line-level differences per file, obliging the programmer to
read changed lines file by file, even when those cross-file
changes were done systematically with respect to the pro-
gram’s structure. Similarly, other differencing tools that
work at different levels of abstraction (e.g., abstract syntax
trees [4] and control flow graphs [5]) do not help developers
grasp the underlying latent structure of systematic changes
nor identify anomalies that violate systematic change pat-
terns. Therefore, programmers are left to manually inspect
individual code edits.

This paper introduces Critics, a novel interactive approach
to investigate diff outputs. It combines program differencing
with interactive code pattern search in order to locate and
summarize systematic changes. Figure 1 gives an overview
of Critics. It takes as input the old and new program ver-
sions. By selecting a certain region of a diff patch in Eclipse
Compare (a viewer for investigating line-level differences),
a user can specify the change he or she wants to search
further. Critics extracts change context—surrounding state-
ments that the selected change may depend on. It allows
a reviewer to interactively generalize the change template
to enable approximate matching. For example, a reviewer
may parameterize type, variable, or method names in the
AST edits or exclude certain statements in the surrounding
contexts. Using the customized template, a user can then
search the entire program and examine the matched diff re-
gions. During this process, Critics also detects inconsistent
or missing edits that violate the systematic change patterns.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2661675

755

Figure 2: A screen snapshot of Critics Eclipse Plug-in and its features.

This paper’s main contribution is to describe the features
of Critics from a user’s perspective. The Eclipse plug-in
is available for download at https://sites.google.com/a/

utexas.edu/critics/. The detailed algorithm and evalua-
tion is described in our separate technical report [6].

2. MOTIVATING EXAMPLES AND TOOL
FEATURES

This section presents Critics features with a motivating
example. Suppose Barry and Alice are developing an online
sales system for a pizza store. Suppose Barry is conducting
a code review of a diff patch authored by Alice. The check-
in message says, “update to use log4j for log management.”
Barry wants to check that Alice refactored all locations that
print log messages to the console, so that these locations
can use Apache log4j APIs instead. Without Critics, Barry
must inspect each changed location one after another be-
cause existing diff displays only line-level differences per file.
Furthermore, he has to search the entire codebase to ensure
that Alice did not miss anything, because missing updates do
not appear in the diff patch. This manual reviewing process
not only requires the deep knowledge of the codebase but
also is tedious and error prone.

Eclipse Compare View. Barry first inspects a region
of changed code in method OrderDealer using the Eclipse
Compare View (see ¬ in Figure 2). In this method, Alice
updated the original System.out.println statement with
log4j API debug. Barry checked this change and now he
wonders if Alice updated all other similar locations correctly.
To automate this process, he selects the changed code in
both old and new versions and then provides the selected

code as an input to Critics for further search.
Diff Template View. Critics models and visualizes the

selected change as an abstract diff template. Barry can
review and customize the template in a side-by-side Diff
Template View (see in Figure 2). The diff template
serves as a change pattern for searching similar edits. In
the template, Critics includes change context—unchanged,
surrounding statements relevant to the selected change in the
template. In this example, Critics includes an if statement
because the changed code is executed only if the if condition
is satisfied. Nodes with light blue color refer to statements
that the user originally selected. Yellow nodes represent
statements that the change is control dependent on. Green
nodes represent parent nodes of the selected code. Orange
nodes represent statements that the change is data dependent
on. Barry can preview the textual template in the Textual
Diff Template View (see ± in Figure 2).

Matching Result View. Based on the diff template,
Critics identifies similar changes and locates anomalies. It
reports them in the Matching Result View. If the syn-
tactic differences match the diff template in both the old and
new versions, Critics summarizes this location as systematic
change in Matching Locations (see ® in Figure 2). If the
target code matches the old version but does not match
the new version, such unpairing is reported as anomalies
in Inconsistent Locations (see ¯ in Figure 2). In the
first attempt, Barry does not edit the template and searches
matching locations. Critics summarizes locations that are
identical to the template and reports those violations against
the template, as shown in Figure 3. The bake method is
detected as a possible anomaly, because it shares the same
context in the old revision but Alice did not update this

756

Figure 3: Searching results and diff details.

Figure 4: Dialog for parameterizing type, method,
and identifier names in an abstract diff template.

method.
Diff Details View. When Barry clicks an individual

change location in the Matching Result View, the corre-
sponding differences are presented in the Diff Details View
(see ° in Figure 2). Changed code is highlighted in this view,
and inserted code is marked with ‘+’, while deletion is marked
with ‘-’. By comparing contents in the Diff Details View
and those in the Diff Template View, Barry can quickly
figure out why each location is identified as a similar change
or reported as an anomaly, without navigating different files
back and forth. If he wants to drill down into the source
code and double clicks a location, Critics redirects him to
the change location in the Eclipse Compare View.

Template Refinement and Search. To match similar
but not identical changes, Barry can generalize identifiers in
the diff template, including type, variable, and method names,
as shown in Figure 4. When he generalizes variable log and
method debug, Critics locates method deliver which uses
variable myLogger and invokes method error instead of log
and debug. Barry further excludes a context node, an if

statement, in the template by double clicking the node. This
time Critics reports a change within a while loop in method
run in the Matching Result View in Figure 2. Barry can
progressively explore the diff patch and search for similar
changes till he is confident that all locations are updated
correctly.

3. IMPLEMENTATION
This section describes the implementation details of Crit-

ics. Critics is implemented as an Eclipse Plug-in and consists
of four components: (1) selection of a diff region, (2) context
extraction with dependency analysis, (3) template generation,
and (4) a search engine for similar changes and potential
mistakes, as shown in Figure 1.

Change Selection. Currently, Critics is integrated with
Eclipse Compare, which displays line-level differences per

file. Critics captures the selected code fragment in a side-
by-side view and pipes it to the next phase of an abstract
diff template extraction.

Context Extraction. Given a specified change, Crit-

ics computes change contexts from both the old and new
versions using data, control, and containment dependence
analysis. Critics first converts source code to abstract syntax
tree (AST) with ASTParser.1 ASTParser resolves binding
information for each reference during the parsing process. A
change is control dependent on a statement if the code in the
change may or may not execute based on the decision made
by the statement. Critics creates a control flow graph (CFG)
using the Crystal static analysis framework.2 By travers-
ing a CFG, Critics identifies nodes that strictly dominate
the changed nodes. Containment dependence captures the
structure of the changed location, i.e., a parent and child
relationship, which is computed by traversing abstract syntax
trees.

Template Generation. The diff template is composed
of the selected change and the extracted context. For the con-
venience of reviewing and editing template, Critics visualizes
the template as a graph, using the Eclipse Zest visualization
framework.3 When an identifier (e.g., a variable, type, or
method name) is generalized, it is replaced with a param-
eterized name, such as $f, $t and $m, in the template. An
excluded context node is also marked as $EXCLUDED, as shown
in ± in Figure 2. These wildcard-like labels help Critics rec-
ognize the generalized content and support fuzzy matching
in the following search process.

Template Matching and Search. Given a diff tem-
plate, Critics extracts two AST query trees, a before state
tree containing statements from the old version and an after
state tree containing statements from the new version, and
searches respectively against the old and new program. To
do that, Critics parses methods and computes similarity
between the query and target trees with an adapted Robust
Tree Edit Distance (RTED) [7] algorithm. It first aligns tree
nodes and pairs excluded nodes with any nodes in the target
tree. For paired nodes, it tokenizes node labels to compute
label similarity. A generalized identifier such as $f1 is con-
sidered equivalent with any concrete element of the same
type. If a changed location in a method matches both the
before state tree and the after state tree, it is summarized as
a systematic change. However, if it matches the before state
but not the after state tree (or vice versa), it is reported as
a potential anomaly textemdash a missing or inconsistent
update.

4. RELATED WORK
Several approaches detect inconsistent updates to code

clones. CP-Miner [8], SecureSync [9], and Jiang et al.’s
work [10] find cloning-related inconsistencies by searching for
duplicated code. SPA [11] categorizes four common types of
porting inconsistencies and detects discrepancies between the
surrounding context of systematic changes. Unlike Critics,
none of these tools give the users the control to interactively
tune the abstract template interactively. Critics also differs
from these techniques by applying program differencing in

1
ASTParser is provided by JDT toolkit, http://projects.eclipse.

org/projects/eclipse.jdt.
2
The Crystal framework – http://code.google.com/p/crystalsaf/

3
The Zest framework – http://wiki.eclipse.org/Zest

757

tandem with interactive code pattern search.
Instant clone search techniques take a code example as

input and returns other similar code examples on demand.
For example, Wang et al. [12] propose a dependence-based
code search technique. Critics differs from these code match-
ing and pattern mining techniques by detecting anomalies in
changes as opposed to a single program version. LASE [13]
automatically generates an abstract edit script from multiple
change examples to find and update similar code fragments.
While LASE focuses on automated completion of similar
changes, Critics’s goal is to summarize similar changes and
to detect change anomalies for peer code reviews. LASE
requires users to provide multiple change examples, while
Critics allows users to interactively generalize the diff tem-
plate to be used for search. LSdiff [14] infers systematic
change patterns at a coarse granularity and summarizes
them as logic rules. It also detects potential inconsistencies
that violate the systematic change patterns. However, be-
cause LSdiff does not leverage any human input, it often
discovers a large amount of rules in an inefficient top-down
manner.

5. SUMMARY
We present Critics, a novel code review approach that

integrates interactive code search, program differencing, and
anomaly detection. It takes as input a selected sub region
of diff patch and allows a reviewer to customize the change
template by interactively generalizing the AST edits and
surrounding context.

As future work, to reduce the burden of refining an ab-
stract diff template, we plan to provide generalization hints
to users. We will further investigate heuristics that devel-
opers employ for parameterizing edit content and build a
conceptual model for inferring best template configuration
heuristics.

6. ACKNOWLEDGEMENT
This work was supported in part by the National Science

Foundation under grants CCF-1149391, CCF-1117902, SHF-
0910818, CNS-1239498, and a Google Faculty Award.

7. REFERENCES
[1] A Frank Ackerman, Lynne S Buchwald, and Frank H

Lewski. Software inspections: An effective verification
process. IEEE software, 6(3):31–36, 1989.

[2] Peter C Rigby and Christian Bird. Convergent contem-
porary software peer review practices. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 202–212. ACM, 2013.

[3] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang,
and Sunghun Kim. How do software engineers under-
stand code changes?: an exploratory study in industry.
In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering,
page 51. ACM, 2012.

[4] Beat Fluri, Michael Würsch, Martin Pinzger, and Har-
ald C. Gall. Change distilling—tree differencing for

fine-grained source code change extraction. IEEE Trans-
actions on Software Engineering, 33(11):18, November
2007.

[5] Taweesup Apiwattanapong, Alessandro Orso, and
Mary Jean Harrold. Jdiff: A differencing technique and
tool for object-oriented programs. Automated Software
Engineering, 14(1):3–36, 2007.

[6] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and
Miryung Kim. Critics: Interactive summarization of
systematic changes and anomaly detection for peer code
reviews. Technical report, University of Texas at Austin,
TR-ECE-2014-4, April, 2014.

[7] Mateusz Pawlik and Nikolaus Augsten. RTED: a robust
algorithm for the tree edit distance. Proceedings of the
VLDB Endowment, 5(4):334–345, 2011.

[8] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A tool for finding copy-paste and
related bugs in operating system code. In OSDI, pages
289–302, 2004.

[9] Nam H. Pham, Tung Thanh Nguyen, Hoan Anh Nguyen,
and Tien N. Nguyen. Detection of recurring software
vulnerabilities. In Proceedings of the IEEE/ACM Inter-
national Conference on Automated software engineering,
ASE ’10, pages 447–456, New York, NY, USA, 2010.
ACM.

[10] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-
based detection of clone-related bugs. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, pages 55–64, New York, NY, USA, 2007.
ACM.

[11] B. Ray, Miryung Kim, S. Person, and N. Rungta. Detect-
ing and characterizing semantic inconsistencies in ported
code. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages
367–377, Nov 2013.

[12] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang,
Hong Mei, and Jeffrey Xu Yu. Matching dependence-
related queries in the system dependence graph. In
Proceedings of the IEEE/ACM International Conference
on Automated software engineering, ASE ’10, pages 457–
466, New York, NY, USA, 2010. ACM.

[13] Na Meng, Miryung Kim, and Kathryn McKinley. Lase:
Locating and applying systematic edits by learning from
examples. In ICSE ’13: Proceedings of 35th IEEE/ACM
International Conference on Software Engineering, pages
502–511. IEEE Society, 2013.

[14] Miryung Kim and David Notkin. Discovering and rep-
resenting systematic code changes. In ICSE ’09: Pro-
ceedings of the IEEE 31st International Conference on
Software Engineering, pages 309–319, Washington, DC,
USA, 2009. IEEE Computer Society.

758

