
Augmenting Stack Overflow with API Usage Patterns Mined
from GitHub

Anastasia Reinhardt∗
George Fox University
Newberg, Oregon, U.S.

areinhardt14@georgefox.edu

Tianyi Zhang†
University of California, Los Angeles

Los Angeles, California, U.S.
tianyi.zhang@cs.ucla.edu

Mihir Mathur
University of California, Los Angeles

Los Angeles, California, U.S.
mihirmathur@ucla.edu

Miryung Kim
University of California, Los Angeles

Los Angeles, California, U.S.
miryung@cs.ucla.edu

ABSTRACT
Programmers often consult Q&A websites such as Stack Overflow
(SO) to learn new APIs. However, online code snippets are not
always complete or reliable in terms of API usage. To assess online
code snippets, we build a Chrome extension, ExampleCheck that
detects API usage violations in SO posts using API usage patterns
mined from 380K GitHub projects. It quantifies how many GitHub
examples follow common API usage and illustrates how to remedy
the detected violation in a given SO snippet. With ExampleCheck,
programmers can easily identify the pitfalls of a given SO snippet
and learn how much it deviates from common API usage patterns
in GitHub. The demo video is at https://youtu.be/WOnN-wQZsH0.

CCS CONCEPTS
• Software and its engineering→ Software reliability; Integrated
and visual development environments;

KEYWORDS
online Q&A forum, API usage pattern, code assessment
ACM Reference Format:
Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim. 2018.
Augmenting Stack Overflowwith API Usage PatternsMined fromGitHub. In
Proceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3236024.3264585

1 INTRODUCTION
Programmers often search for online code examples to learn new
APIs. A case study at Google shows that developers issue an av-
erage of 12 code search queries per weekday [8]. Stack Overflow
∗Work done as an intern at University of California, Los Angeles.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264585

� Pop-up window

� API misuse description

� Fix suggestion

� Like or dislike

� Supporting GitHub 
examples

� Pagination for multiple misuses

Figure 1: The ExampleCheckChrome extension that augments
Stack Overflow with API misuse warnings. The pop-up win-
dow alerts that match_number can be null if the requested JSON

attribute does not exist andwill crash the program by throw-
ing NullPointerException when getAsString is called on it.

(SO) is a popular Q&A website that programmers often resort to.
As of July 2017, Stack Overflow has accumulated more than 22
million answers, many of which contain code snippets for specific
programming questions. However, SO snippets are not always com-
plete or reliable, which can be misleading and sometimes harmful
when programmers follow them as-is during software development.
For example, Fischer et al. find that 29% of security-related code
snippets in Stack Overflow are insecure and might affect over 1
million Android apps in Google play [7].

This tool demonstration paper builds on the API usage mining
and API misuse detection technique described in our ICSE 2018
paper [11]. Our insight is that common API usage inferred from
a large corpus of 380K GitHub projects may represent a desirable
pattern that a programmer can use to examine and enhance SO
code snippets. Mined API usage patterns abstract away syntactic
details such as variable names, but retain the temporal ordering,
control structures, and guard conditions of API calls.

This paper, in particular, focuses on the tool features and im-
plementation details of a Chrome extension, called ExampleCheck
that informs programmers about API usage violations in SO posts.
Figure 1 shows a screenshot of ExampleCheck. Given a SO post,

880

https://youtu.be/WOnN-wQZsH0
https://doi.org/10.1145/3236024.3264585
https://doi.org/10.1145/3236024.3264585


ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim

API Usage Pattern
Database

Web Browser

ExampleCheck Server

<code>
   code snippet
</code>

... text ...

... text ...

html page chrome extension

Code
Extraction

Popup
Generation

inject

parse Method Call
Extraction

Message Generation

Fix Suggestion API Misuse
Detection

code snippet(s)

java call seqeunce
query

patterns

violations
jsonjsonjson

violation message(s),
fixed snippet(s), etc.

Figure 2: An overview of ExampleCheck’s architecture

ExampleCheck first extracts the sequence of API calls with corre-
sponding control constructs and guard conditions. ExampleCheck
then contrasts the call sequence against the common API usage
patterns mined from GitHub. To help users understand a detected
violation, ExampleCheck generates a descriptive warning message
and illustrates how to fix the violation with corresponding GitHub
examples. Using common API usage patterns to detect violations
may lead to false alarms, since these mined, common patterns do
not necessarily represent correct API usage. To mitigate this is-
sue, ExampleCheck allows users to upvote or downvote a reported
violation based on its applicability and usefulness.

The resulting data set of mined API usage patterns, detected
violations in Stack Overflow, and our manual inspection result are
publicly available at http://web.cs.ucla.edu/~tianyi.zhang/examplecheck.
html. The Chrome extension is available at Chrome Web Store [2].

2 APPROACH & IMPLEMENTATION
This section describes the tool implementation details of Exam-
pleCheck. Figure 2 shows the architecture of ExampleCheck. The
API usage mining process is computed offline and the resulting
patterns are stored in a database. The technical details and evalua-
tion of API usage mining technique is presented in our ICSE 2018
paper [11]. When a user loads a Stack Overflow page in the Chrome
browser, the Chrome extension extracts code snippets within <code>

tags in answer posts, and sends them to the back-end server. The
back end then detects API usage violations in a snippet and synthe-
sizes warning messages and corresponding fixes. For each misused
method call in a snippet, the Chrome extension generates a pop-up
window using the Bootstrap popover plug-in1 to inform the user
about the API misuse information.

API Usage Mining and the Resulting Pattern Set. Our min-
ing technique in [11] leverages a distributed software mining in-
frastructure [6] to search over the corpus of 380K GitHub projects.
Given an API method of interest, it identifies code fragments that
use the same method in the GitHub corpus and performs pro-
gram slicing to remove statements that are not related to the given
method. Then it combines frequent subsequence mining and SMT-
based guard condition mining to retain important API usage fea-
tures, including the temporal ordering of related API calls, enclosing
control structures, and guard conditions that protect an API call.
We evaluated the mining technique using 30 API methods from
MUBench [3]. Our mining technique has 80% precision and 91%
recall, when considering top 5 patterns for each API method.

1https://www.w3schools.com/bootstrap/bootstrap_popover.asp

In our prior work [11], we mined API usage patterns of 100
popular Java API methods and carefully inspected 245 inferred
patterns based on online documentation. As a result, we curated a
dataset of 180 validated, correct patterns for API misuse detection,
which covers API usages shown in 217K SO posts in Java. These
patterns are represented as API call sequences with surrounding
control constructs. Each API call is also annotated with its argument
types and guard conditions. For example, one pattern, loop {;

get(int)@arg0<rcv.size(); }, checks if the index is out of bounds
when calling the get method on an ArrayList object.

API Misuse Detection. Given a code snippet sent from the
browser, the server first extracts the API call sequence from the
snippet. We use a partial program analysis and type resolution tech-
nique [9] to parse incomplete snippets and resolve ambiguous types.
If a SO snippet has multiple methods, ExampleCheck inlines the
call sequence of an invoked method into the sequence of the caller
to emulate a lightweight inter-procedural analysis. ExampleCheck
then queries the pattern database for the API calls present in each
API call sequence. Given an API call sequence and an API usage
pattern, it checks whether (1) the API calls and control constructs
in the sequence follow the same temporal order in the pattern, and
(2) the guard condition of an API call in the sequence implies the
guard of the corresponding API call in the pattern. ExampleCheck
uses a SMT solver, Z3 [5], to check whether one guard condition
implies another. ExampleCheck is capable of detecting three types of
API usage violations—missing control constructs,missing or incorrect
order of API call, and incorrect guard condition.

Warning Message Generation. Given an API usage violation
and the correct pattern, ExampleCheck generates a warningmessage
that describes the violation in natural language text. Table 1 shows
the warning message templates for different types of API usage vio-
lations. In each template, <?> is instantiated with the corresponding
API calls or control constructs based on the detected API usage vio-
lation and the correct pattern. <before/after> is instantiated based
on the relative order of the two API calls in the correct pattern.
The warning messages also describe which exception types are not
handled in the snippets detected with missing try-catch violations.
To help users understand the prevalence of a recommended API
usage pattern, the warning message also quantifies howmany other
code fragments follow the same pattern in GitHub.

Fix Suggestion. ExampleCheck further suggests a correct way
of using an API method by synthesizing a readable fixed snippet
based on the original SO snippet. ExampleCheck first matches each
API call in the recommended API usage pattern with the given
SO snippet. If an API call is matched, ExampleCheck reuses the

881

http://web.cs.ucla.edu/~tianyi.zhang/examplecheck.html
http://web.cs.ucla.edu/~tianyi.zhang/examplecheck.html
https://www.w3schools.com/bootstrap/bootstrap_popover.asp


Augmenting Stack Overflow with API Usage Patterns from GitHub ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 1: Warning message templates for different types of API usage violations. <?> and <before/after> are instantiated based
on API usage violations and correct patterns. The digits in the last column are the SO post ids of the warning examples.

Violation Type Description Template Example Warning Message

Missing/Incorrect Order of API calls You may want to call <?> <before/after> calling <?> You may want to call TypedArray.recycle() after calling
TypedArray.getString(). [ 35784171 ]

Missing Control Constructs You may want to call the API method <?> in <?> You may want to call Cursor.close() in a finally block. [ 31427468 ]

Missing Try-Catch You may want to handle the potential <?> exception thrown
by <?> using a try-catch block

You may want to handle the potential SQLException thrown by
PreparedStatement.setString() using a try-catch block. [ 11183042 ]

Incorrect Guard Conditions You may want to check whether <?> is true before calling <?> You may want to check whether iterator.hasNext() is true. [ 25789601 ]

same receiver object and arguments of the corresponding API call
from the original SO snippet in the synthesized snippet. Otherwise,
ExampleCheck names the receiver and arguments based on their
types. For example, if the receiver type of an unmatched API call
(i.e., a missing-API-call violation) is File, ExampleCheck names the
receiver object as file, the lower case of the receiver type. In this
way, ExampleCheck reduces the mental gap for switching between
the original SO post and the recommended snippet.

3 DEMONSTRATION SCENARIO
Suppose Alice wants to read attribute values from a JSON message
using Google’s Gson library. Alice searches online and finds a re-
lated Stack Overflow post with an illustrative code example, as
shown in Figure 1.2 Though this post is accepted as a correct an-
swer, it does not properly use the JsonElement.getAsStringmethod,
which gets the string value of a JSON element. For example, if the re-
quested attribute does not exist in the JSON message, the preceding
API call, JsonObject.getwill return null, which consequently leads
to NullPointException when calling getAsString on the returned
object. If Alice puts too much trust on this example of the SO post,
she may inadvertently follow an unreliable solution, which might
lead to runtime errors in some corner cases.

Alice cannot easily recognize the potential limitation of the given
SO post, unless she manually investigates other similar code ex-
amples. ExampleCheck frees Alice from this manual investigation
labor by contrasting a Stack Overflow post with common API usage
patterns mined from over 380K GitHub repositories. ExampleCheck
then highlights the potential API usage violations in the Stack
Overflow post. When Alice clicks on a highlighted API call, Exam-
pleCheck generates a pop-up window with detailed descriptions
about the API usage violation, as shown in Figure 1.

API misuse description. To help Alice understand a detected
API usage violation, ExampleCheck translates the violation to a natu-
ral language description (① in Figure 1). From the warning message,
Alice learns that she should check whether the JsonElement object
is null before calling getAsString. ExampleCheck also displays a
message that 119 GitHub examples also follow this usage pattern.
Such quantification can provide additional evidence about how
many real-world examples are different from the given SO snippet.

Fix suggestion. ExampleCheck further sketches how to correct
the violation in the original SO post, as shown in ③ in Figure 1.
This fix is an embodiment of the correct API usage pattern in the
context of the SO post. To reduce the gap between the fix and the
original post, ExampleCheck reuses the same variable names in the

2https://stackoverflow.com/questions/29860000
3https://goo.gl/YHo1UM

Figure 3: A programmer can view a concrete code example
from GitHub that follows a correct API usage pattern, when
clicking on a GitHub example link in the pop-up window.3

original SO posts to generate a suggestion with improved API usage.
For example, the JsonElement variable in the generated example is
named as the same variable, match_number in the original post.

Linking GitHub examples. To help Alice understand how the
same API method is used in real-world projects, ExampleCheck
provides several GitHub examples that follow the suggested API
usage pattern (⑤ in Figure 1). Alice is curious about how others
use JsonElement.getAsString. When she clicks on the link of the
first GitHub example, ExampleCheck redirects Alice to a GitHub
page and automatically scrolls down to the Java method where
JsonElement.getAsString is called, as shown in Figure 3. Compared
with the simplified SO example in Figure 1, this GitHub code is
more carefully constructed with multiple if checks. For example,
it not only checks whether the JsonElement object is null, but also
checks whether it is a primitive type to avoid ClassCastException

before calling getAsString. By providing the traceability to concrete
code examples in GitHub, Alice could gain a more comprehensive
view of correct API usage in production code, which may not be
illustrated in simplified code examples in Stack Overflow.

User feedback. After investigating the concrete example in
GitHub, Alice finds it necessary to perform a null check. She up-
votes the pattern by clicking on the “thumbs-up” button to notify

882

https://stackoverflow.com/questions/35784171
https://stackoverflow.com/questions/31427468
https://stackoverflow.com/questions/11183042
https://stackoverflow.com/questions/25789601
https://stackoverflow.com/questions/29860000
https://goo.gl/YHo1UM


ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim

Figure 4: Another API usage warning that reminds program-
mers to check whether the JsonElement object represents a
JSON primitive value by calling isJsonPrimitive. It also sug-
gests to catch potential exceptions thrown by getAsString.

other users that this detected violation is helpful (④ in Figure 1).
Alice also finds that her decision resonates with the majority of
ExampleCheck users, since nine users also upvoted this violation.

Multiple API usage violations. If a method call in a SO post
violates multiple API usage patterns, ExampleCheck displays them
in separate pages in a pop-up window. These pages are first ranked
by the vote score (i.e., upvotes minus downvotes) of each violated
pattern, and then by the number of GitHub examples that support
a pattern if two patterns have the same vote score. As shown in ⑥

in Figure 1, the method call, getAsString violates four API usage
patterns. Figure 4 shows the second violated pattern and suggests
Alice to check whether the JsonElement object represents a JSON

primitive value before calling getAsString. Otherwise, getAsString
will throw ClassCastException. ExampleCheck also suggests Alice
to wrap getAsString with a try-catch block to handle potential
exceptions. This pattern is supported by 48 GitHub examples.

4 RELATEDWORK
Prior work has investigated the quality of code snippets in Stack
Overflow. Several studies show that SO snippets are often incom-
plete and the API names appearing in these snippets are hard to re-
solve [4, 9]. Zhou et al. observe that 86 of 200 accepted SO posts use
deprecated APIs but only 3 of them are reported by other users [12].
Fischer et al. find that 29% of security-related SO snippets are inse-
cure and have potentially been reused to over 1 million Android
apps on Google play [7]. Treude and Robillard conduct a survey
to investigate comprehension difficulty of code examples in Stack
Overflow [10]. The responses from GitHub users indicate that less
than half of the SO examples are self-explanatory due to issues such
as incomplete code and missing explanations. Though we draw mo-
tivation from these studies, ExampleCheck focuses on detecting API
usage violations by contrasting SO code examples against common
API usage patterns mined from GitHub. While ExampleCheck fol-
lows a similar style to Codota [1], Codota does not group related
examples based on common API usage, does not quantify how
many GitHub code snippets support the common usage, and does

not detect API misuse by contrasting the SO post against desirable
API usage mined from GitHub.

5 SUMMARY
The main contribution of this paper is the design and implemena-
tion of ExampleCheck, which provides browser-based tool support
for systematically assessing and augmenting Stack Overflow with
common API usage patterns mined from GitHub. In our previous
work [11], we examine 217K SO posts with 180 validated patterns
and find that 31% of SO posts have potential API usage violations.
The first two authors manually inspect 400 SO posts with detected
API usage violations and confirm real API misuse in 289 posts,
which can produce symptoms such as program crashes and re-
source leaks if the posts are reused as-is to target projects. We also
find that many unreliable examples are simplified to operate on
crafted input data for illustration purposes only. Such curated exam-
ples could be insufficient for various input data and usage scenarios
in real software systems, especially for handling corner cases.

As future work, we plan to conduct a longitudinal study with
Stack Overflow users to understand the adoption and usage of
ExampleCheck. We will also investigate different weighting schemes
for effectively ranking detected API usage violations.

ACKNOWLEDGMENT
Participants in this project are supported by AFRL grant FA8750-
15-2-0075, NSF grants CCF-1764077, CCF-1527923, CCF-1460325,
CCF-1723773, ONR grant N00014-18-1-2037 and gift from Huawei.

REFERENCES
[1] 2018. Codota. https://www.codota.com/code-browsing-assistant.
[2] 2018. ExampleCheck - Chrome Web Store. https://chrome.google.com/webstore/

detail/examplecheck/amliempebckaiaklimcpopomlnklkioe.
[3] Sven Amani, Sarah Nadi, Hoan A Nguyen, Tien N Nguyen, and Mira Mezini.

2016. MUBench: a benchmark for API-misuse detectors. In Proceedings of the
13th International Conference on Mining Software Repositories. ACM, 464–467.

[4] Barthélémy Dagenais and Martin P Robillard. 2012. Recovering traceability links
between an API and its learning resources. In Proceedings of the 34th International
Conference on Software Engineering. IEEE, 47–57.

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[6] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In Proceedings of the 35th International Conference on Software Engineering. IEEE,
422–431.

[7] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack overflow considered harmful?
the impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy. IEEE, 121–136.

[8] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191–201.

[9] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proceedings of the 36th International Conference on Software
Engineering. ACM, 643–652.

[10] Christoph Treude and Martin P Robillard. 2017. Understanding Stack Overflow
Code Fragments. In Proceedings of the 33rd International Conference on Software
Maintenance and Evolution. IEEE, 509—513.

[11] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are code examples on an online Q&A forum reliable?: a
study of API misuse on stack overflow. In Proceedings of the 40th International
Conference on Software Engineering. ACM, 886–896.

[12] Jing Zhou and Robert J Walker. 2016. API deprecation: a retrospective analysis
and detection method for code examples on the web. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 266–277.

883

https://www.codota.com/code-browsing-assistant
https://chrome.google.com/webstore/detail/examplecheck/amliempebckaiaklimcpopomlnklkioe
https://chrome.google.com/webstore/detail/examplecheck/amliempebckaiaklimcpopomlnklkioe

	Abstract
	1 Introduction
	2 Approach & Implementation
	3 Demonstration Scenario
	4 Related Work
	5 Summary
	References

