
Exempla Gratis (E.G.): Code Examples for Free
Celeste Barnaby

Facebook Inc.
U.S.A.

celestebarnaby@fb.com

Koushik Sen
UC Berkeley

U.S.A.
ksen@berkeley.edu

Tianyi Zhang
Harvard University

U.S.A.
tianyi@seas.harvard.edu

Elena Glassman
Harvard University

U.S.A.
glassman@seas.harvard.edu

Satish Chandra
Facebook Inc.

U.S.A.
schandra@acm.org

ABSTRACT

Modern software engineering often involves using many exist-
ing APIs, both open source and – in industrial coding environ-
ments – proprietary. Programmers reference documentation and
code search tools to remind themselves of proper common usage
patterns of APIs. However, high-quality API usage examples are
computationally expensive to curate and maintain, and API us-
age examples retrieved from company-wide code search can be
tedious to review. We present a tool, EG, that mines codebases and
shows the common, idiomatic usage examples for API methods. EG
was integrated into Facebook’s internal code search tool for the
Hack language and evaluated on open-source GitHub projects writ-
ten in Python. EG was also compared against code search results
and hand-written examples from a popular programming website
called ProgramCreek. Compared with these two baselines, exam-
ples generated by EG are more succinct and representative with
less extraneous statements. In addition, a survey with Facebook
developers shows that EG examples are preferred in 97% of cases.

CCS CONCEPTS

• Software and its engineering → Software maintenance

tools.

KEYWORDS

API examples, big code, software tools
ACM Reference Format:

Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish
Chandra. 2020. Exempla Gratis (E.G.): Code Examples for Free. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-
vember 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368089.3417052

1 INTRODUCTION

Application programming interfaces (APIs) are becoming a perva-
sive component of modern software engineering. A core challenge

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3417052

for software engineers in industry is to use existing APIs in id-
iomatic ways within their organization. In order to do this, develop-
ers often search for API documentation and usage examples [5, 6, 25].
However, this can be especially challenging in companies where
many APIs are proprietary. Because those proprietary APIs are
only documented within the company by its engineers, there is
no externally crowdsourced documentation or examples posted on
sites like StackOverflow.

Usage examples are a key component of API documentation [17].
Examples can refresh a programmer’s memory [4], concretize the
more abstract components of documentation [25], and support
code improvement and adaptation [16, 38]. However, there is some
risk that programmers will generalize from or adapt an example
incorrectly, e.g., leaving in irrelevant components or leaving out
critical ones. One useful trait of an example is succinctness [22]:
having minimal details specific to a particular usage situation and
few superficial distractions, leaving just what is common across
most or all proper usages of the API. Alternatively, multiple ex-
amples showing a variety of usages [23] may help programmers
infer what may be common and uncommon usage patterns and
parameter values. Writing usage examples that have these helpful
properties is labor-intensive, especially when there exist multiple
proper, consistently used usage patterns within an organization.

Regardless of whether available documentation includes one or
more usage examples, many programmers instead use company- or
project-wide code search to find API usage snippets. However, code
search engines results ranking is difficult and often defaults to show-
ing the most recently edited files first. The task of sifting through
myriad code search results in an attempt to glean a common usage
pattern can be tedious, time-consuming, and unproductive [31]. If
the developer does decide to use code from a code search result,
they have no assurance that this code represents a common usage,
rather than an atypical, niche way of using a method. In fact, prior
work has shown that individual code examples may even suffer
from API usage violations [37], insecure coding practices [7], and
unchecked obsolete usage [39]. Therefore, without thoroughly in-
specting and comparing many examples, developers may leave out
critical safety checks or desirable usage scenarios.

Several approaches have been previously proposed to address
this challenge of presenting programmers with good API usage ex-
amples, whether found through search or automatically generated.
A number of approaches cluster and rank similar examples to reduce
the cognitive load of reading through individual examples [5, 11, 12].

https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1145/3368089.3417052

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra

However, these clustering techniques rely on pre-defined similarity
metrics and do not help users understand why some examples are
clustered together, e.g., the commonalities and variations among
those examples. Buse et al. presented a synthesis technique to gen-
erate a single example from multiple similar examples [5], but the
synthetic example only demonstrates a common skeleton, without
showing possible variations. In contrast, Examplore is capable of
visualizing an entire distribution over API usage features in a large
number of API usage examples [8], but the analysis requires a pre-
defined API skeleton and concrete usage patterns are best revealed
through additional interaction with the visualization.

In this paper, we present EG, a tool that mines codebases and
showsmultiple common, idiomatic usage examples for APImethods.
EG assumes access to a large repository of Python programs from
many projects. Given a query API method, EG first searches all
methods in the repository containing at least one usage of the API
method. It then computes the parse tree of each such method and
finds the maximal subtree that a) contains the query API, and b)
is part of a meaningful proportion of methods. EG then serializes
the subtree to create a common idiomatic usage pattern of the API
method. EG repeats this process multiple times to find 𝑛 diverse
idiomatic usage patterns.

Once EG has generated several common usage patterns, it dis-
plays the patterns to users in an easy-to-use interface. For each
usage pattern, EG displays a concise and representative code snip-
pet to serve as an example of that usage pattern. In each example,
EG emphasizes the code parts that are part of the common usage
pattern in bold texts, while graying out the uncommon parts – re-
ferred to in this paper as "filler". Further, EG displays how many
times each usage pattern appears in the repository. This interface
allows users to efficiently understand the common usage of an
API method, and relieves the cognitive load of manually looking
through code results in an attempt to discern a common pattern. In
additional, EG relieves the burden of manually curating examples
for API methods, and automates the task of keeping API examples
up-do-date and relevant as a codebase changes.

EG has several properties that are particularly advantageous
for its scalability and generality. First, EG is language agnostic:
to generate EG examples for a new programming language, one
need only implement a new parser. Second, EG does not require
mining coding patterns ahead of time, and can retrieve new and
idiomatic usage patterns on-the-fly. Third, EG is fast enough to
use in real time, and can generate examples from a large corpus
containing millions of methods within a couple of seconds on a
multi-core server machine. On average, EG takes 1.0 seconds to
generate examples for a query method on a 24-core CPU.

We have implemented EG in C++ for Hack and Python. We have
also integrated EG into Facebook’s internal code search website,
where it is used daily by developers. We report our experimental
evaluation of EG for Python. We have used EG to index 1,900,911
Python methods obtained from open source GitHub projects. We
performed our experiments for Python because it is a language that
is widely used at Facebook, as well as in open source projects. We
evaluated EG against code search results and examples from Pro-
gramCreek, a website providing code examples of Python methods.
We found that developers preferred EG examples to code search
results in over 99% of cases, and that a majority of developers found

the main features of the EG interface useful. We also found that
EG examples were shorter, more relevant, and more representative
than code search results or ProgramCreek examples.

The rest of this paper is organized as follows. Section 2 motivates
the design of EG with insights and lessons learned from deploying
another code search and recommendation tool in Facebook. Sec-
tion 3 describes a usage scenario of learning APIs with EG. Section 4
describes the pattern mining and example generation algorithms
in EG. Section 5 describes the evaluation of EG, including a survey
with Facebook developers, a quantitative analysis of examples gen-
erated by EG and two other tools, and a summary of EG’s usage
metrics after its deployment in Facebook. Section 5.4 discusses the
challenges we encountered when evaluating EG. Section 6 discusses
related work and Section 7 concludes this paper.

2 MOTIVATIONS FROM FACEBOOK

Aroma is a code-to-code search and recommendation tool. It has
been integrated into Facebook’s IDE and internal code search web-
site in December 2018 [16]. Given a code snippet as input and a
large code corpus, Aroma returns a set of idiomatic extensions
to the input code clustered together from similar code snippets
in the corpus. Aroma produces code recommendations for Hack,
Python, Java, and JavaScript. Here, we summarize how the lessons
we learned from Aroma informed the design of EG.

We expected that developers would query Aroma with multi-line
code snippets, to get recommendations for how they should modify
or improve their code. However, we found that in practice, most
Aroma queries were for single API methods. Furthermore, most of
these queried APIs were Facebook-specific APIs for which there
was little existing documentation and no hand-written examples.
We concluded, then, that developers at Facebook were using Aroma
to obtain API usage examples.

Since Aromawas not designed for generating examples of API us-
age, recommendations created from querying a single API method
had several shortcomings. First, we found that across many different
methods, APIs, and libraries, Aroma recommendations consistently
cut out the arguments passed into a function call. For example, in
Figure 1, the example generated by Aroma does not include any ar-
guments to the assert_frame_equalmethod in pandas.testing.
This is because Aroma is designed to prune out code that is dif-
ferent among multiple snippets in a cluster, while retaining code
that is commonly shared among them. Since different calls to this
method tend to contain different arguments, the arguments are
pruned out in the recommendation. Second, examples generated
by Aroma include many extraneous statements. In Figure 1, this
example contains several lines that are not strictly relevant to the
assert_frame_equal call, such as the function header, and the
initialization of the query variable.

For API learning, these shortcomings are detrimental. When
learning the common usage of an API method, it is helpful to see its
common arguments, and usually unhelpful to see a lot of extraneous
context. Prior work has shown that conciseness is an important
feature of code examples, and that the median length of hand-
written examples is five lines [22]. Aroma’s ability to perform fuzzy
searches also goes under-utilized when the query is a single method.

Exempla Gratis (E.G.): Code Examples for Free ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: EG code examples for a variety of Python methods.

Query Examples Notes

Case A: json.dump
This usage pattern is found in 29 out of 336 samples. 1

with open(self.output_path, 'w') as f:
json.dump(data, f)

This usage pattern is found in 17 out of 336 samples. 2

with open(out_filename, "w") as f:
json.dump(info, f, indent=2)

This usage pattern is found in 17 out of 336 samples. 3

with open(Path(self.rnn_dir) / "cli_args.json", "w") as f:
json.dump(self.cli_args, f, indent=4, sort_keys=True)

The first example shows that the following is idiomatic:
• Opening a file before calling json.dump
• Passing ’w’ as the second argument to open
• Passing f as the second argument to json.dump

The second and third examples show that it is also idiomatic to pass
an integer to the optional parameter indent, and to pass True to
the optional parameter sort_keys

Case B:
os.makedirs This usage pattern is found in 103 out of 1699 samples. 4

output_dir = os.path.join(args.output_dir,
"checkpoint-".format(global_step))

if not os.path.exists(output_dir):
os.makedirs(output_dir)

This usage pattern is found in 110 out of 1699 samples. 5

base_dir = os.path.dirname(fname)
if not os.path.exists(base_dir):

os.makedirs(base_dir)

This usage pattern is found in 116 out of 1699 samples. 6

year_dir = os.path.join(save_dir,
url.split('/')[-1].split('.')[0])

if not os.path.isdir(year_dir):
os.makedirs(year_dir)

The first example shows that the following is idiomatic:
• Calling os.path.join and os.path.exists before call-

ing os.makedirs.
• Calling os.makedirs on the condition that the directory

you are making does not already exist.
The second example shows an alternate idiom where
os.path.dirname is called instead of os.path.join, while the
third example calls os.path.isdir instead of os.path.exists.

Case C: range
This usage pattern is found in 213 out of 2000 samples. 7

for i in range(3):
img[:,:,i] = (img[:,:,i] - mean[i]) / std[i]

This usage pattern is found in 150 out of 2000 samples. 8

columns=[str(col) + '_%d' % (i,)
for i in range(len(sum_contrast_matrix.column_suffixes))]

This usage pattern is found in 123 out of 2000 samples. 9

for j in range(start, i):

The first example shows that the following is idiomatic:
• Calling range in the condition of a for loop.
• Naming the for loop variable i.

The second example shows a common idiom for list comprehension
using range, while the third example shows that two variables may
be passed to range.

Case D:
csv.writer This usage pattern is found in 11 out of 160 samples. 10

with open(filename, 'a+', newline='') as file:
writer = csv.writer(file)
writer.writerow(fieldnames)

This usage pattern is found in 11 out of 160 samples. 11

writer = csv.writer(csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL)

writer.writerow([hike_name, url, trailhead_name, ...])

This usage pattern is found in 11 out of 160 samples. 12

with open(ntf.name, "w") as f:
ntf_writer = csv.writer(f, delimiter=",")

The first example shows that the following is idiomatic:
• Opening a file before calling csv.writer
• Passing ’a+’ as the second argument to open, and pass-

ing ” as the argument to the optional parameter newline
• Calling writer.writerow after csv.writer

The second example shows an alternate idiom where a list of items
is passed to writer.writerow, while the third example shows an
idiom where an argument is provided for the optional parameter
delimiter

Case E:
requests.post This usage pattern is found in 67 out of 1019 samples. 13

response = requests.get(url, timeout=10)

This usage pattern is found in 48 out of 1019 samples. 14

try:
response = requests.get(url)

except requests.HTTPError as error:

This usage pattern is found in 48 out of 1019 samples. 15

url = 'https://kyfw.12306.cn/otn/passcodeNew/...'
r = requests.get(url)

The first example shows that the following is idiomatic:
• Naming the variable assigned to requests.get

"response"
• Passing two arguments to requests.get

The second example shows an alternate idiom where the call to
requests.get is wrapped in a try-catch block, while the third ex-
ample shows that it is common to initialize a string variable names
url before calling requests.get.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra

Figure 1: Aroma recommendation for assert_frame_equal
16

For these reasons, we decided that, while Aroma is still a power-
ful code recommendation engine with other potential uses, it is not
suitable as a generator of API usage examples. Thus, we created
EG to allow developers to see succinct, idiomatic usage examples
for an API method. Figure 2 shows the top example generated by
EG for learning assert_frame_equal. This example includes the
arguments of the queried method and removes those extraneous
statements. The additional code serves only to further illuminate
the use of assert_frame_equals, as it shows how to initialize its
arguments. Further, EG shows code elements that are common in
black text, and code elements that are unique to a single snippet
in gray text. This allows users to understand what is common and
what is atypical, while still seeing a complete, readable example.

Figure 2: EG’s example for assert_frame_equal 17

3 USAGE SCENARIO

This section describes a usage scenario of learning PythonAPIs with
EG.While we find EG to bemost useful for proprietary libraries with
few hand-written examples, we cannot release such proprietary
code in this paper for confidentiality reasons. Thus, for the purposes
of this scenario, we assume that hand-written examples for the
libraries mentioned are not widely available.

Suppose Harry is a novice Python developer. He needs to write
code that creates a directory and then writes some text to a file
in that directory. He is aware that there is a makedirs function
in the os package, but he is not sure how to use it. He searches
for os.makedirs in EG. Figure 3 shows the top example gener-
ated by EG. This example shows that among 1699 snippets that call
os.makedirs, 103 followed the same API usage pattern. The bolded
code in this example shows the idiomatic usage of os.path.exists.
Harry finds that it is common to check whether the directory ex-
ists before creating it. Further, he finds that it is idiomatic to call
os.path.join together with os.makedirs to safely construct a
file path across platforms. A link to the file containing the code
snippet used in this example is displayed above the code snippet,
which Harry can use if he wants to see additional context.

Harry clicks "Show More Examples" to view additional usage
examples of os.makedirs, as shown in Figure 4. He sees that the

Figure 3: EG’s interface showing an example for

os.makedirs. When code search results initially load,

the top EG example is presented as the first result.
4

third example calls os.path.isdir in the if statement instead
of os.path.exists. The text above this code example indicates
that this is a common usage pattern appearing in 116 out of 1699
snippets, giving Harry confidence that this is another standard
check before calling os.makedirs. Harry copies this code from the
EG example and replaces year_dir with the name of his directory.
Since these examples generated by EG have already summarized
distinct API usage in hundreds of examples in the codebase, Harry
feels he does not look at any additional code search results.

Figure 4: The "ShowMore Examples" button displays the top

three common usage examples.
456

Harry now needs his code to write text to a file, so he queries
write in EG, without including a package name. Figure 5 shows
the top example generated by EG. He sees that this common usage
pattern is found in 150 methods out of 2000 snippets, indicating that
it is idiomatic to open a file before calling write. He also sees that,
in this code snippet, the second argument to open is "w". Further
search shows that "w"means write-only. This is exactly what Harry
needs. By stitching this example with the previous example, Harry
successfully writes the desired code.

Figure 5: EG’s example for write.18

Exempla Gratis (E.G.): Code Examples for Free ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

4 EXAMPLE GENERATION ALGORITHM

In this section, we describe several notations and definitions to
compute the simplified parse tree of a program. The terminologies
and notations are similar to that in Aroma [16]. We reintroduce the
definitions to keep the paper self-contained.

4.1 Formal Definitions

Definition 4.1 (Keyword tokens). This is the set of all tokens in a
language whose values are fixed as part of the language. Keyword
tokens include keywords such as while and if, and symbols such
as {, }, ., +, *. The set of all keyword tokens is finite for a language.

Definition 4.2 (Non-keyword tokens). This is the set of all tokens
that are not keyword tokens. Non-keyword tokens include variable
names, method names, field names, and literals.

Examples of non-keyword tokens are i, length, 0, 1, etc. The set
of non-keyword tokens is non-finite for most languages.

Definition 4.3 (Simplified Parse Tree). A simplified parse tree is a
data structure to represent a program. It is recursively defined as a
non-empty list whose elements could be any of the following:
• a non-keyword token,
• a keyword token, or
• a simplified parse tree.

Moreover, a simplified parse tree cannot be a list containing a single
simplified parse tree.

We picked this particular representation of programs instead
of a conventional abstract syntax tree representation because the
representation only consists of program tokens, and does not use
any special language-specific rule names such as IfStatement,
block etc. As such, the representation can be used uniformly across
various programming languages. Moreover, one could perform an
in-order traversal of a simplified parse tree and print the token
names to obtain the original program. We use this feature of a
simplified parse tree to show the common usage examples.

Definition 4.4 (Label of a Simplified Parse Tree). The label of a
simplified parse tree is obtained by concatenating all the elements
of the list representing the tree as follows:
• If an element is a keyword token, the value of the token is
used for concatenation.
• If an element is a non-keyword token or a simplified parse
tree, the special symbol # is used for concatenation.

For example, the label of the simplified parse tree ["x", ">", ["y",
".", "f"]] is "#>#".

Figure 6 shows a code snippet and its simplified parse tree. In the
figure, each internal node represents a simplified parse tree, and
is labeled using the tree’s label as defined above. Since keyword
tokens in a simplified parse tree become part of the label of the
tree, we do not create leaf nodes for keyword tokens in the tree
diagram—we only add leaf nodes for non-keyword tokens. We show
the label of each node in the tree, and add a unique index to each
label as subscript to distinguish between nodes with similar labels.

To obtain the simplified parse tree of a code snippet, EG relies
on a language-specific parser. For example, EG utilizes the lib2to3
Python parser to produce the simplified parse tree for a Python

with open(self.output_path, 'w') as f:
json.dump(data, f)

Figure 6: A simplified parse tree of a code snippet. Variable

nodes are highlighted in double circles.

program. Once the simplified parse tree of a code snippet has been
created, the rest of EG’s algorithm is language-agnostic.

We will represent a simplified parse tree 𝑡 using the tuple
(𝑁, 𝐿, 𝐸), where
• 𝑁 is the set of nodes of the tree,
• 𝐿 is a function that maps a node to the label of the subtree
rooted at the node,
• 𝐸 is a children function. If 𝑛2 is the 𝑖th direct child of the
node 𝑛1, then 𝐸 (𝑛1, 𝑖) = 𝑛2. If the 𝑖th child of a node 𝑛 does
not exist, then 𝐸 (𝑛, 𝑖) = ⊥.

For example, with#:#1 and self8 ∈ 𝑁 are sample nodes in the tree
shown in Figure 6. 𝐿(with#:#1) = with#:#. 𝐸 (#as#2, 2) =f12.

A subtree of a tree 𝑡 is a tree rooted at some node in 𝑡 and con-
tains all the descendants of the node in 𝑡 . Formally, 𝑡 ′ = (𝑁 ′, 𝐿, 𝐸 ′)
is a subtree of 𝑡 = (𝑁, 𝐿, 𝐸) if the following conditions hold:
• 𝑁 ′ ⊆ 𝑁 ,
• for all 𝑛1 ∈ 𝑁 ′ if there exists 𝑛2 ∈ 𝑁 and an 𝑖 ∈ N such that
𝐸 (𝑛1, 𝑖) = 𝑛2, then 𝑛2 ∈ 𝑁 ′ and 𝐸 ′(𝑛1, 𝑖) = 𝑛2,
• for all 𝑛 ∈ 𝑁 ′, if there exists 𝑖 ∈ N such that 𝐸 (𝑛, 𝑖) = ⊥,
then 𝐸 ′(𝑛, 𝑖) = ⊥.

For example, the subtree rooted at ##3 in Figure 7 is highlighted in
red.

A context tree of a tree 𝑡 is the tree with some of its subtrees re-
moved. Formally, if 𝑡 ′ = (𝑁 ′, 𝐿, 𝐸 ′) is a context tree of 𝑡 = (𝑁, 𝐿, 𝐸),
then the following conditions hold:
• 𝑁 ′ ⊆ 𝑁 ,
• for all 𝑛1 ∈ 𝑁 ′ if there exists 𝑛2 ∈ 𝑁 and a 𝑖 ∈ N such that
𝐸 (𝑛2, 𝑖) = 𝑛1, then 𝑛2 ∈ 𝑁 ′ and 𝐸 ′(𝑛2, 𝑖) = 𝑛1.

In Figure 7, we highlight a context of the tree in green.
A context subtree can be obtained from a tree first by picking

a subtree of the tree and then picking a context tree of the subtree.
We also use the term pattern to refer to a context subtree.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra

Figure 7: A simplified parse tree with a subtree highlighted

in red and a context highlighted in green.

4.2 EG Algorithm

We assume that we are given a set of trees 𝑇 and a query tree 𝑞.
Note that a query – for example, json.dump – is parsed as a code
construct as well. EG works in two steps to create a common usage
pattern. First, it finds a pattern 𝑡 such that 𝑞 is a subtree of 𝑡 and 𝑡
is a pattern in each tree in a subset 𝑇 ′ of 𝑇 . The pattern denotes a
partial code snippet that is common and contains the query snippet.
Second, EG finds a completion of the pattern by picking a subtree
from a suitable tree in 𝑇 ′. The subtree must contain the pattern as
a context. The subtree denotes a common usage code snippet of 𝑞.

Phase 1. EG starts with the pattern 𝑞 and grows it iteratively by
adding nodes to the pattern as shown in Figure 9. Let us assume
that after some iteration the current pattern is 𝑡𝑐 = (𝑁, 𝐿, 𝐸) and
it is present exactly in 𝑇𝑐 ⊆ 𝑇 trees. Then a suitable neighboring
node 𝑛1 is added to the pattern to obtain a new bigger pattern
as described in Figure 10 . The tuple (𝑙, 𝑖, 𝑛1, 𝑛2, 𝑏) denotes that a
node 𝑛1 is added to the tree 𝑡𝑐 where 𝑙 is the label of 𝑛1, 𝑛2 is the
node in 𝑡𝑐 connected to 𝑛1, and 𝑏 is a Boolean which if true means
𝐸 (𝑛2, 𝑖) = 𝑛1, and 𝐸 (𝑛1, 𝑖) = 𝑛2 if 𝑏 is false. The support of a tree
added to the pattern is the number of trees in 𝑇𝑐 that contain the
new pattern (see Figure 11). In an iteration, EG adds a node to 𝑡𝑐
such that the new pattern has the highest support. At the end of an
iteration, EG updates 𝑡𝑐 with the new pattern and the set of all the
trees in 𝑇𝑐 containing the new pattern becomes the new 𝑇𝑐 .

EG continues the iterations until the number of nodes in 𝑡𝑐
exceeds a configurable threshold 𝛾 (usually set to 100) or the car-
dinality of 𝑇𝑐 divided by 𝑇 goes below a configurable threshold 𝛼
(usually set to .05). Threshold 𝛾 ensures that the generated example
is not too long, while threshold 𝛼 ensures that the generate example
is a common snippet.

Figure 8 shows the maximal pattern computed for the query
json.dump from two simplified parse trees. The nodes in the pattern
are highlighted in green.

Phase 2. Once EG has computed a pattern contained in several
trees, it tries to complete the pattern by adding the missing subtrees

if data:
with open(self.output_path, 'w') as f:

json.dump(data, f)

print("Writing to %s." % json_path)
with open(json_path, 'w') as f:

json.dump(scan_json_results, f)

Figure 8: The maximal pattern computed for the query

json.dump from two different simiplified parse trees. The

nodes in the pattern are highlighted in green. The filler code

is highlighted in blue.

in the pattern. In EG our goal is to show a real code snippet instead
of a synthetic one, because we have found that programmers feel
more confident with real code snippets. This means that we need
to pick a minimal subtree from the final set𝑇𝑐 such that the subtree
contains the pattern. We focus on a few properties of the tree which
makes the common usage example code snippet short yet common.

Exempla Gratis (E.G.): Code Examples for Free ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Phase 1:

Input: a set of simplified parse trees 𝑇
Input: the query tree 𝑞
𝑇𝑐 ← {𝑡 ∈ 𝑇 | 𝑡 contains 𝑞 as a subtree}
𝑡𝑐 ← 𝑞

while no. of nodes in 𝑡𝑐 ≤ 𝛾 and |𝑇𝑐 | > |𝑇 | ∗ 𝛼 do

if ∃(𝑙, 𝑖, 𝑛1, 𝑏) and ∃𝑛2 in nodes of 𝑡𝑐 such that
Support(Extend(𝑡𝑐 , 𝑙, 𝑖, 𝑛1, 𝑛2, 𝑏), 𝑇𝑐) ≥ Sup-
port(Extend(𝑡𝑐 , 𝑙 ′, 𝑖 ′, 𝑛′1, 𝑛

′
2, 𝑏), 𝑇𝑐) for all (𝑙 ′, 𝑖 ′, 𝑛′1)

and 𝑛′2 in nodes of 𝑡𝑐 then
𝑡𝑐 ← Extend(𝑡𝑐 , 𝑙, 𝑖, 𝑛1, 𝑛2, 𝑏)
𝑇𝑐 ← {𝑡 ∈ 𝑇𝑐 | 𝑡 contains 𝑡𝑐 }

end if

end while

return 𝑡𝑐 ,𝑇𝑐

Figure 9: Phase 1 algorithm.

Extend(𝑡𝑐 , 𝑙, 𝑖, 𝑛1, 𝑛2, 𝑏)
Let 𝑡𝑐 = (𝑁, 𝐿, 𝐸)
𝐿 ← 𝐿 ∪ {𝑛1 ↦→ 𝑙}
𝑁 ← 𝑁 ∪ {𝑛1}
if 𝑏 then

𝐸 ← 𝐸 ∪ {(𝑛2, 𝑖) ↦→ 𝑛1}
else

𝐸 ← 𝐸 ∪ {(𝑛1, 𝑖) ↦→ 𝑛2}
end if

return 𝑡𝑐

Figure 10: Extend(𝑡𝑐 , 𝑙, 𝑖, 𝑛1, 𝑛2, 𝑏) adds the node 𝑛1 with label

𝑙 to the node 𝑛1 in 𝑡𝑐 and adds the edge 𝐸 (𝑛2, 𝑖) = 𝑛1 if 𝑏, and
𝐸 (𝑛1, 𝑖) = 𝑛2 otherwise.

Support(𝑡,𝑇)
return |{𝑡 ′ | 𝑡 ′ ∈ 𝑇 and 𝑡 ′ contains t as a pattern}|

Figure 11: Support(𝑡,𝑇) computes the number of trees in 𝑇

that contain 𝑡 as a pattern.

First, the code snippet should be short. Second, it should have more
commonality to the code snippets in 𝑇𝑐 .

In order to find the best subtree that extends the pattern found
in Phase 1, we assign a score to each subtree obtained from the
trees in𝑇𝑐 . Let us call a subtree that can fill a missing subtree in the
pattern a filler tree. Let us also call the location at which a filler
subtree is missing in the pattern a hole. Therefore, a pattern has
a fixed finite number of holes. For a given tree 𝑡 in 𝑇𝑐 and a hole
in the pattern, let 𝑓 be the filler that fills the hole in 𝑡 . The score
of 𝑓 is then the number of trees in 𝑇𝑐 where 𝑓 is the filler of the
hole. If the filler has more than 𝛽𝑡 of tokens (usually set to 5) or
more than 𝛽𝑐 characters (usually set to 50), we set the score of 𝑓
to 0. This ensures that the code snippets are concise. We take the
sum of all the fillers of the pattern in 𝑡 to compute the score of 𝑡 .
We then pick the tree in 𝑇𝑐 which has the highest score and show
its minimal subtree containing the pattern as the common usage
example. EG reconstructs the example with an in-order traversal of

the subtree. Figure 8 shows the filler code computed for the query
json.dump. The nodes in the filler code are highlighted in blue.

4.3 Creating Multiple Common Usage

Examples

The algorithm above describes the process of generating a single
common usage example for an API method. However, in many
scenarios a user may be interested in multiple yet diverse usage
examples. EG generates distinct usage examples for a single query
as follows. EG generates the first common usage example using the
regular EG algorithm described above—however, EG maintains a
set of all the nodes added to the pattern in Phase 1. Let us call this
set used_nodes. EG then saves that pattern, and begins the example
generation again with the same initial set of trees. However, if at any
point the second most common adjacent node is not in used_nodes
and has at least half as many occurrences as the most common
adjacent node, we add that node to the pattern instead. We then
finish the example generation as normal.

EG repeats this process 𝑛 times to create 𝑛 distinct usage exam-
ples. In the EG interface, we display the top three usage examples.

5 EVALUATION

We designed the following experiments to evaluate EG. In each
experiment, we compared a code example of an API method gen-
erated by EG against a randomly selected code snippet containing
the method from the code corpus. The random example displays
the line of code where the method is called, as well as the two lines
of code preceding and following the method call. This random ex-
ample serves as a reasonable stand-in for an arbitrary code search
result, as code search engines typically display 2-4 lines of addi-
tional context by default. We use this as a comparison point since
code search is the de facto way developers learn APIs in real-world
programming workflows—especially for proprietary APIs where
no hand-written examples exist [3, 26].

We aim to answer the following research questions:
RQ1. Do developers prefer EG code examples to code search re-

sults?
RQ2. How does EG perform against comparable tools on several

quantitative metrics measuring code example quality?
RQ3. If EG is made accessible, will developers incorporate EG

code examples into their workflows?

5.1 RQ1: Survey with Facebook Developers

We first conducted a survey to measure the quality of code examples
generated by EG, compared with code search results. The survey
first displayed six common Python libraries, and asked participants
to select two libraries they were most familiar with. The survey
then showed ten API methods in each of the two selected libraries.
For each method, two code examples were listed: the top-ranked
example generated by EG (Option A) and a random example from
the code search result (Option B). Participants were asked three
questions about these two kinds of examples. Table 2 shows the
questions in the survey.

We sent out the survey to 21 Facebook developers. 18 developers
completed the survey (86% response rate). Overall, the examples
generated by EG were preferred over the random examples 97% of

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra

the time. In addition, 66% of participants agreed that it is helpful to
see the number of code examples that follow the same API usage
pattern. 100% of participants agreed that it is helpful to color-code
and distinguish code parts that are commonly shared among many
examples. When asked to describe what they liked and disliked
about the two kinds of examples, participants expressed a markedly
positive sentiment towards EG: one said, “the usage count is super
useful especially to make sure that the code you are looking at is
consistent with the rest of the codebase.” Another participant said, “I
think that the formatting (color) makes it easier to quickly compare a
few examples...and find the most relevant example for your use case.”

Table 2: Questions asked in the Facebook survey.

1. Suppose you were learning to use this library. Which
code examples would you prefer to see? Select one:
• Strongly prefer A
• Prefer A
• Somewhat prefer A
• Somewhat prefer B
• Prefer B
• Strongly prefer B

2. To what extent do you agree with this statement: It is
helpful to see the count of methods that contain a common
usage pattern (e.g. “Common usage pattern found in 120
out of 2000 methods”).
• Strongly agree
• Agree
• Somewhat agree
• Somewhat disagree
• Disagree
• Strongly disagree

3. To what extent do you agree with this statement: It is
helpful for a code example to be formatted so I can see what
is common and what is unique to a specific use case (e.g.
common part in black, unique part in gray).
• Strongly agree
• Agree
• Somewhat agree
• Somewhat disagree
• Disagree
• Strongly disagree

5.2 RQ2: Quantitative Evaluation with Metrics

In addition to the qualitative survey with real developers, we con-
ducted a quantitative analysis of the quality of examples generated
by EG. We defined several metrics to measure example quality:
• Succinctness: How many lines of code are in the example?
• Relevancy: How relevant is the surrounding code in the
example w.r.t. understanding the usage of the queried API?
• Representativeness: How frequently do other examples in
the code corpus follow the same pattern in the example?

Succinctness is measured by counting the number of lines in an
example. We did not count empty lines or code comments. Rele-
vancy is measured as the ratio of relevant lines in an example to total
lines. A relevant line is a line whose meaning and connection to the
query method is clear without additional explanation or context.
Figure 12 illustrates this metric by showing random code search re-
sults and EG examples for two methods, with relevant lines bolded
and the query methods highlighted. In the code search example
for np.array, the first line does not show how or why reshape is
called, so this line is deemed irrelevant. Without additional context,
we also do not know what discretize.EntropyMDL does, so lines
4 and 5 are not relevant. In the EG example for np.array, lines 1
and 2 show calls to np.array, while lines 3 and 4 show the returned
values of np.array being passed to fit_transform – so all of these
lines are relevant. In the code search example for pd.concat, it is
not clear what df1 on lines 4 and 5 is used for, and how or if it
pertains to pd.concat – so these two lines are irrelevant. In the
EG example for pd.concat, lines 1 and 2 show the initialization of
variables passed to pd.concat in line 3 – making all 3 lines rele-
vant to understanding how pd.concat is used. Representativeness
is measured by the ranking score that EG assigns to an example.
Recall that this score is the sum of the number of occurrences of
each filler option in the example. In this way, this score reflects
how representative this example is of a common use of the query
method. To measure the representativeness of the comparison base-
line (i.e., code examples randomly selected from the original search
result), we first check whether the method containing this random
example is one of the methods containing the EG common usage
pattern. If it is, we take that method’s ranking score as the repre-
sentativeness score. Otherwise, we assign the random example a
representativeness score of 0. Notice that relevancy is measured
by manually assessing the code snippets, while succinctness and
representativeness are computed automatically.

For this experiment, we considered four popular Python libraries:
Pandas, os, Numpy, and TensorFlow. For each library, we selected
the ten most used methods in GitHub – forty methods total. We
compared average succinctness, relevancy, and representativeness
of the top EG example, a random code search result, and the top
example from ProgramCreek [2]. ProgramCreek is a website where
users can query a Python library method and see functions from
open source GitHub projects that call that method. Users vote on
which functions represent the best example of a method. The top
ProgramCreek example was taken to be the method with the most
upvotes. Since the example was a complete method, relevancy was
not a meaningful measurement; however, we were still able to
measure length.

Table 3 shows the quality of code examples generated by EG,
randomly selected from code search results, and selected from Pro-
gramCreek [2]. Compared with examples from EG and Program-
Creek, random examples contained many more irrelevant lines of
code, as well as long, uninformative identifier names. Meanwhile,
ProgramCreek examples were on average over five times longer
than EG examples.

We also collected 100 Hack API methods that had been queried
in Facebook’s code search website most frequently over a 30 day
period. Hack is a programming language created by Facebook as
a dialect of PHP [1]. These 100 Hack methods were queried an

Exempla Gratis (E.G.): Code Examples for Free ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Code search examples

).reshape((100, 1))
Y = np.array([0] * 25 + [1] * 75)
table = data.Table.from_numpy(None, X, Y)
disc = discretize.EntropyMDL()
dvar = disc(table, table.domain[0])

Ozone1 = pd.concat([df.Ozone] * K)
print(Time1.shape, Ozone1.shape,

Time1.describe(), Ozone1.describe())
df1 = pd.DataFrame();
df1['Time'] = Time1.values;

EG examples

X = np.array(['a', 'b', 'c'])
y = np.array([1, 0, 1])
out = encoders.JamesSteinEncoder(model='binary')

.fit_transform(X, y)

sparse1 = pd.SparseSeries(val1, name='x')
sparse2 = pd.SparseSeries(val2, name='y')
res = pd.concat([sparse1, sparse2], axis=1)

Figure 12: Random code search examples and EG examples

for several methods, with relevant lines bolded.
19

Table 3: The Quality of Code Examples for 40 Popular Meth-

ods in Python

Type of Example Length Relevancy Representativeness

EG 2.675 .996 59.6
Code Search 3.9 .640 .2
ProgramCreek 13.8 – –

average of 8.6 times, ranging from 5 times to 26 times. For these 100
methods, we measured the average length and representativeness
of EG examples and random code search results. Since these 100
methods are proprietary API methods in Facebook, we were not
able to find curated examples from ProgramCreek. As a result, we
are not able to compare EG with ProgramCreek. Table 4 shows the
quality of code examples generated by EG and randomly selected
from code search results. Similar to the results on open-source
libraries, examples generated by EGwere significantly more concise
and representative than examples selected from the original code
search results.

Table 4: The Quality of Code Examples for 100 Internal

Methods in Facebook

Type of Example Length Representativeness

EG 3.5 116.6
Code Search 4.6 2.1

5.3 RQ3: Live Usage in Facebook

We have integrated EG into Facebook’s internal code search website.
When users query a method name in Hack or Python, the top EG
example is displayed first, before the standard code search results.
There is a link to the full contents of the file containing the code
snippet used in the example, and a "Show More Examples" button
that displays two additional common usage patterns. EG only shows
the three most common usage patterns, ensuring that its interface
is compact and easy to use. EG’s integration into the code search
platform was frictionless: developers began to use EG with no prior
announcement or tutorial.

EG is deployed on a dedicated set of servers to respond to queries
from developers. Our search server has 24 cores, and on average
takes 1.0 seconds end-to-end to generate Python code examples
for the queries used in Section 5.2. The median response time is
.8 seconds and the maximum is 2.3 seconds. EG re-indexes the
millions of methods in Facebook’s codebase daily. This indexing
process works the same as in Aroma [16]. On a 24-core server, this
process takes 20 minutes on average. If EG were to be deployed on
a larger codebase, it would be possible to implement incremental
indexing for only changed files. Since the goal of EG is to provide
relevant and up-to-date usage examples, we show examples for
only the most recently indexed version of the codebase, and we do
not maintain past examples generated from prior versions.

We have been logging the usage of EG in the code search website.
We log each time a user copies or selects code from an EG example,
clicks the file link, or clicks the "ShowMore Examples" button. Note
that copying and selecting are the only events we log with a clear
signal that the user actually reused code in the example.

Over a period of 24 days, from April 20 to May 13, EG was trig-
gered to generate code examples for an average of 1,171 code search
queries per day. Facebook developers interacted with EG examples
an average of 59 times per day, and copied or selected code from an
EG example an average of 30 times per day. While this appears to be
a low ratio of interactions to total examples generated, there are sev-
eral factors to keep in mind. First, developers do not always query
method names because they want to see code examples—for in-
stance, a developer may instead be looking for a specific file or class.
We have no way to determine what a developer’s intentions are
when they query a method name. Second, note that we integrated
EG into the code search website without any public announcement.
Therefore, Facebook developers may not even notice it among the
other features of the code search website. The discoverability of
EG is an orthogonal problem from its effectiveness, which we will
investigate in the future. Finally, because a central feature of EG
examples is succinctness, developers may be learning or "mentally
copying" from an example without physically interacting with it.

Despite these concerns, these results show that real developers
indeed utilize EG in their workflows. A formal A/B test comparing
EG examples against code search results remains as future work.

5.4 Discussion

Evaluating example generation is an interesting and complicated
problem. We initially attempted to design a study wherein devel-
opers receive a comprehensive list of API usage questions. They
are asked to answer these questions for one API using EG, and

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra

for another using a realistic baseline of code search. The problem
with this approach is that EG’s focus is on providing a short list
of idiomatic usage examples. EG makes no claim to offer the best
or most informative usage example—but a succinct example repre-
senting a common usage pattern. Thus, we needed an evaluation
that measured the benefit of seeing such a common usage pattern.

We next attempted to design a human study wherein participants
complete short programming tasks using EG. A main challenge
was devising a control to measure EG against. An obvious candi-
date is Facebook’s internal code search website. However, EG is
not intended to replace code search altogether, but rather to be
a complementary extension integrated into existing code search
tools. Thus, it did not make sense to restrict the use of code search.
However, Facebook employees are conditioned to use code search
results as a go-to method for API inquiries, so even when the EG
example contained salient, time-saving information, they often still
wanted to page through code search results. Untangling what the
user gained from EG versus what they gained from code search,
or from documentation, proved difficult. In addition, success in
solving a short programming task is extremely dependent on what
background knowledge a developer has.

A tool like EG also runs the risk of identifying and perpetuating
common anti-patterns. By indexing Facebook’s codebase, we ensure
that all code has been reviewed by a developer – however, code can
still become out of date or deprecated. A potential solution would
be to only index code in a codebase written after a certain threshold
date. Another would be to indicate to the user in the UI the date
when the code displayed in an example was written. Exploring this
issue further is left for future work.

6 RELATEDWORK

Developers often search for code in their own codebases or online to
fulfill programming needs such as learning new APIs and locating
code snippets with desired functionality [4, 21, 26, 28, 34]. For ex-
ample, Sim et al. conducted a lab study with 36 graduate students to
evaluate the effectiveness of different code retrieval techniques [28].
In the demographic survey, 50% of participants reported to search
code online frequently and 39% reported to search occasionally.
Sadowski et al. analyzed the search logs generated by 27 Google
developers over two weeks [26]. They found that developers issued
an average of 12 code search queries per weekday.

There is a large body of literature in code search [3, 9, 10, 12–
15, 18–20, 24, 27, 29, 30, 32, 33, 35, 36]. These techniques focus on
1) enriching search queries and 2) improving search algorithms.
For example, beyond simple keyword descriptions, S6 [24] and
CodeGenie [15] allow users to identify relevant code based on test
cases. Prospector [18] supports expressing type constraints such
as desired input and output types in a query. Code-to-code search
tools such as FaCoY [13] take code fragments directly as input
and identify other similar code. Wang et al. represented source
code as a dependency graph to capture control-flow and data-flow
dependencies in a program, and matched search queries against pro-
gram dependence graphs [35]. Gu et al. trained a neural network to
predict relevant code examples given natural language queries [9].

Unlike our work, the aforementioned techniques provide limited
support for browsing and assessing code search results. Previous

studies have shown that it is cognitively demanding to navigate
through code search results [6, 31]. As a result, developers often
rapidly skim through a handful of search results and make a quick
judgement about the quality of these results [4]. When browsing
search results, they also often backtrack due to irrelevant or unin-
teresting information in search results [6]. More specifically, Starke
et al. show that developers rarely look beyond five examples when
searching for code examples [31]. These observations indicate that
the code exploration process is often limited to a few search results,
leaving a large portion of foraged information unexplored.

Several approaches have been proposed to help developers navi-
gate through code search results. To enable users to explore a large
number of code examples simultaneously, Examplore constructs a
code skeleton with statistical distributions of individual API usage
features in those examples [8]. ALICE allows users to mark several
search results as desired or undesired and then automatically filter
the remaining search results, so users do not have to manually go
through all of them [30]. eXoaDocs employs program slicing to
remove extraneous statements in a code example and then clusters
sliced code examples based on the similarity of semantic character-
istics such as invoked API methods in an example [12]. Buse and
Weimer improved eXoaDocs by synthesizing a single concise code
example to summarize similar examples in a cluster [5].

Our approach differs from these techniques in several perspec-
tives. While the tools described above rely on the syntax and seman-
tics of the Java language, EG is language agnostic, requiring only a
parser for the target language. Examplore requires a pre-defined
API usage skeleton to register and align code examples, while EG
does not require a pre-defined skeleton. Buse and Weimer’s tool
generates usage examples for a target class, while EG generates us-
age examples for API or library methods. Finally, to our knowledge,
EG is the only tool designed to generate common usage patterns
of APIs that has been integrated into the code search platform of a
large software company, and is used by developers daily.

7 CONCLUSION

We presented EG, a new tool for generating usage example for API
methods. EG works by first indexing a large code corpus. Given
a query method, it assembles a list of method bodies in the cor-
pus containing that method, then finds the maximal subtree that
contains the query API and is part of a meaningful proportion of
methods. EG then reconstructs this subtree into a succinct, relevant
and representative code example.

To evaluate EG, we indexed a code corpus of 1.9 million Python
methods, and designed a survey where we showed developers pairs
of EG examples and code search results for commonly usedmethods
in popular Python libraries. We observed that developers preferred
EG examples to code search results 97% of the time, and that 100%
of developers agreed that the color-coding of the common usage
pattern in EG examples is helpful. Further, we defined several met-
rics to measure example quality, and quantitatively compared EG
examples against code search results and ProgramCreek examples
using these metrics. We found that across all metrics, EG performs
better than these alternatives. Finally, we integrated EG into Face-
book’s internal code search website. A log of developers’ activities
shows that developers indeed interact with EG examples.

Exempla Gratis (E.G.): Code Examples for Free ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

CODE REFERENCES

1This code snippet is adapted from https://github.com/openai/gym/blob/master/
gym/wrappers/monitoring/video_recorder.py#L229. Accessed in March 2020.

2This code snippet is adapted from https://github.com/scrapinghub/splash/blob/
master/scripts/rst2inspections.py#L77. Accessed in March 2020.

3This code snippet is adapted from https://github.com/supernnova/SuperNNova/
blob/master/supernnova/utils/experiment_settings.py#L161. Accessed in March 2020.

4This code snippet is adapted from https://github.com//huggingface/transformers/
tree/master/examples/run_multiple_choice.py. Accessed in March 2020.

5This code snippet is adapted from https://github.com/zalandoresearch/fashion-
mnist/blob/master/configs.py#L49. Accessed in March 2020.

6This code snippet is adapted from https://github.com/toddheitmann/PetroPy/blob/
master/petropy/download.py#L195. Accessed in March 2020.

7This code snippet is adapted from https://github.com/TarrySingh/Artificial-
Intelligence-Deep-Learning-Machine-Learning-Tutorials/blob/master/deep-
learning/1-pixel-attack/networks/capsnet.py#L41

8This code snippet is adapted from https://github.com/scikit-learn-contrib/
category_encoders/blob/master/category_encoders/sum_coding.py#L238. Accessed in
March 2020.

9This code snippet is adapted from https://github.com/waditu/tushare/blob/master/
tushare/util/common.py#L40. Accessed in March 2020.

10This code snippet is adapted from https://github.com/bboczeng/Nyxar/blob/
master/api/coinmarketcap.py#L94. Accessed in March 2020.

11This code snippet is adapted from https://github.com/vgpena/next-weekend/blob/
master/scraper.py#L82

12This code snippet is adapted from https://github.com/baychimo/loto/blob/master/
tests/test_loto.py#L134. Accessed in March 2020.

13This code snippet is adapted from https://github.com/home-assistant/core/blob/
master/homeassistant/components/ohmconnect/sensor.py#L70. Accessed in March
2020.

14This code snippet is adapted from https://github.com/zvtvz/zvt/blob/master/zvt/
recorders/exchange/china_index_list_spider.py#L85. Accessed in March 2020.

15This code snippet is adapted from https://github.com/testerSunshine/12306/blob/
master/verify/pretreatment.py#L26. Accessed in March 2020.

16This code snippet is adapted from https://github.com/pydata/pandas-gbq/blob/
master/tests/system/test_gbq.py#L130. Accessed in March 2020.

17This code snippet is adapted from https://github.com/pandas-dev/pandas/blob/
master/pandas/tests/frame/test_dtypes.py. Accessed in March 2020.

18This code is adapted from https://github.com/pydata/xarray/blob/master/xarray/
tests/test_backends_file_manager.py#L197. Accessed in March 2020.

19These code snippets have been adapted from https://github.com/renn0xtek9/
Arithmos/blob/799fe071ab3a85ea9a0f86b8099548f11be96841/Arithmos/tests/test_
discretize.py#L111, and https://github.com/antoinecarme/pyaf/blob/master/tests/perf/
test_ozone_long_series.py#L23. Accessed in March 2020.

REFERENCES

[1] 2020. Hack: Programming Productivity Without Breaking Things. https:
//hacklang.org/.

[2] 2020. Program Creek. https://www.programcreek.com/.
[3] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010.

Example-centric programming: integrating web search into the development
environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, 513–522.

[4] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
2009. Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1589–1598.

[5] Raymond PL Buse and Westley Weimer. 2012. Synthesizing API usage examples.
In Software Engineering (ICSE), 2012 34th International Conference on. IEEE, 782–
792.

[6] Ekwa Duala-Ekoko and Martin P Robillard. 2012. Asking and answering ques-
tions about unfamiliar APIs: An exploratory study. In Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 266–276.

[7] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack overflow considered harmful?
the impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 121–136.

[8] Elena L Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing api usage examples at scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–12.

[9] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933–944.

[10] Reid Holmes and Gail C. Murphy. 2005. Using structural context to recommend
source code examples. In ICSE ’05: Proceedings of the 27th International Conference

on Software Engineering (St. Louis, MO, USA). ACM Press, New York, NY, USA,
117–125. https://doi.org/10.1145/1062455.1062491

[11] Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton. 2018. Sum-
marizing Software API Usage Examples Using Clustering Techniques. In Funda-
mental Approaches to Software Engineering, Alessandra Russo and Andy Schürr
(Eds.). Springer International Publishing, Cham, 189–206.

[12] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. 2010. Towards
an intelligent code search engine. In Twenty-Fourth AAAI Conference on Artificial
Intelligence.

[13] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY: a code-to-code search engine. In Proceed-
ings of the 40th International Conference on Software Engineering. ACM, 946–957.

[14] Otávio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar
Masiero, and Cristina Lopes. 2009. Applying test-driven code search to the reuse
of auxiliary functionality. In Proceedings of the 2009 ACM symposium on Applied
Computing. ACM, 476–482.

[15] Otávio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, Joel Ossher, Ri-
cardo Santos Morla, Paulo Cesar Masiero, Pierre Baldi, and Cristina Videira Lopes.
2007. CodeGenie: using test-cases to search and reuse source code. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering. 525–526.

[16] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: Code Recommendation via Structural Code Search. Proc. ACM Program.
Lang. 3, OOPSLA, Article 152, 28 pages. https://doi.org/10.1145/3360578

[17] WalidMaalej andMartin P Robillard. 2013. Patterns of knowledge inAPI reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–
1282.

[18] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
mining: helping to navigate the API jungle. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and implementation
(Chicago, IL, USA). ACM, New York, NY, USA, 48–61. https://doi.org/10.1145/
1065010.1065018

[19] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie.
2012. Exemplar: A source code search engine for finding highly relevant applica-
tions. IEEE Transactions on Software Engineering 38, 5 (2012), 1069–1087.

[20] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Software Engineering
(ICSE), 2011 33rd International Conference on. IEEE, 111–120.

[21] João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente.
2013. Documenting apis with examples: Lessons learned with the apiminer
platform. In Reverse Engineering (WCRE), 2013 20th Working Conference on. IEEE,
401–408.

[22] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
In 2012 28th IEEE International Conference on Software Maintenance (ICSM). IEEE,
25–34.

[23] MaryKay Orgill. 2012. Variation Theory. Springer US, Boston, MA, 3391–3393.
https://doi.org/10.1007/978-1-4419-1428-6_272

[24] Steven P Reiss. 2009. Semantics-based code search. In Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society, 243–
253.

[25] Martin P Robillard. 2009. What makes APIs hard to learn? Answers from devel-
opers. IEEE software 26, 6 (2009), 27–34.

[26] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. 191–201.

[27] Naiyana Sahavechaphan and Kajal Claypool. 2006. Xsnippet: mining for sample
code. ACM Sigplan Notices 41, 10 (2006), 413–430.

[28] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V Lopes.
2011. How well do search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology (TOSEM) 21, 1 (2011),
1–25.

[29] Raphael Sirres, Tegawendé F Bissyandé, Dongsun Kim, David Lo, Jacques Klein,
Kisub Kim, and Yves Le Traon. 2018. Augmenting and structuring user queries
to support efficient free-form code search. Empirical Software Engineering 23, 5
(2018), 2622–2654.

[30] Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim.
2019. Active inductive logic programming for code search. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 292–303.

[31] Jamie Starke, Chris Luce, and Jonathan Sillito. 2009. Working with search results.
In Proceedings of the 2009 ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation. IEEE Computer Society, 53–56.

[32] Jeffrey Stylos and Brad A Myers. 2006. Mica: A web-search tool for finding api
components and examples. In Visual Languages and Human-Centric Computing,
2006. VL/HCC 2006. IEEE Symposium on. IEEE, 195–202.

[33] Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. ACM,

https://github.com/openai/gym/blob/master/gym/wrappers/monitoring/video_recorder.py#L229
https://github.com/openai/gym/blob/master/gym/wrappers/monitoring/video_recorder.py#L229
https://github.com/scrapinghub/splash/blob/master/scripts/rst2inspections.py#L77
https://github.com/scrapinghub/splash/blob/master/scripts/rst2inspections.py#L77
https://github.com/supernnova/SuperNNova/blob/master/supernnova/utils/experiment_settings.py#L161
https://github.com/supernnova/SuperNNova/blob/master/supernnova/utils/experiment_settings.py#L161
https://github.com//huggingface/transformers/tree/master/examples/run_multiple_choice.py
https://github.com//huggingface/transformers/tree/master/examples/run_multiple_choice.py
https://github.com/zalandoresearch/fashion-mnist/blob/master/configs.py#L49
https://github.com/zalandoresearch/fashion-mnist/blob/master/configs.py#L49
https://github.com/toddheitmann/PetroPy/blob/master/petropy/download.py#L195
https://github.com/toddheitmann/PetroPy/blob/master/petropy/download.py#L195
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials/blob/master/deep-learning/1-pixel-attack/networks/capsnet.py#L41
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials/blob/master/deep-learning/1-pixel-attack/networks/capsnet.py#L41
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials/blob/master/deep-learning/1-pixel-attack/networks/capsnet.py#L41
https://github.com/scikit-learn-contrib/category_encoders/blob/master/category_encoders/sum_coding.py#L238
https://github.com/scikit-learn-contrib/category_encoders/blob/master/category_encoders/sum_coding.py#L238
https://github.com/waditu/tushare/blob/master/tushare/util/common.py#L40
https://github.com/waditu/tushare/blob/master/tushare/util/common.py#L40
https://github.com/bboczeng/Nyxar/blob/master/api/coinmarketcap.py#L94
https://github.com/bboczeng/Nyxar/blob/master/api/coinmarketcap.py#L94
https://github.com/vgpena/next-weekend/blob/master/scraper.py#L82
https://github.com/vgpena/next-weekend/blob/master/scraper.py#L82
https://github.com/baychimo/loto/blob/master/tests/test_loto.py#L134
https://github.com/baychimo/loto/blob/master/tests/test_loto.py#L134
https://github.com/home-assistant/core/blob/master/homeassistant/components/ohmconnect/sensor.py#L70
https://github.com/home-assistant/core/blob/master/homeassistant/components/ohmconnect/sensor.py#L70
https://github.com/zvtvz/zvt/blob/master/zvt/recorders/exchange/china_index_list_spider.py#L85
https://github.com/zvtvz/zvt/blob/master/zvt/recorders/exchange/china_index_list_spider.py#L85
https://github.com/testerSunshine/12306/blob/master/verify/pretreatment.py#L26
https://github.com/testerSunshine/12306/blob/master/verify/pretreatment.py#L26
https://github.com/pydata/pandas-gbq/blob/master/tests/system/test_gbq.py#L130
https://github.com/pydata/pandas-gbq/blob/master/tests/system/test_gbq.py#L130
https://github.com/pandas-dev/pandas/blob/master/pandas/tests/frame/test_dtypes.py
https://github.com/pandas-dev/pandas/blob/master/pandas/tests/frame/test_dtypes.py
https://github.com/pydata/xarray/blob/master/xarray/tests/test_backends_file_manager.py#L197
https://github.com/pydata/xarray/blob/master/xarray/tests/test_backends_file_manager.py#L197
https://github.com/renn0xtek9/Arithmos/blob/799fe071ab3a85ea9a0f86b8099548f11be96841/Arithmos/tests/test_discretize.py#L111
https://github.com/renn0xtek9/Arithmos/blob/799fe071ab3a85ea9a0f86b8099548f11be96841/Arithmos/tests/test_discretize.py#L111
https://github.com/renn0xtek9/Arithmos/blob/799fe071ab3a85ea9a0f86b8099548f11be96841/Arithmos/tests/test_discretize.py#L111
https://github.com/antoinecarme/pyaf/blob/master/tests/perf/test_ozone_long_series.py#L23
https://github.com/antoinecarme/pyaf/blob/master/tests/perf/test_ozone_long_series.py#L23
https://hacklang.org/
https://hacklang.org/
https://www.programcreek.com/
https://doi.org/10.1145/1062455.1062491
https://doi.org/10.1145/3360578
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1007/978-1-4419-1428-6_272

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra

204–213.
[34] Medha Umarji, Susan Elliott Sim, and Crista Lopes. 2008. Archetypal internet-

scale source code searching. In IFIP International Conference on Open Source
Systems. Springer, 257–263.

[35] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jeffrey Xu
Yu. 2010. Matching dependence-related queries in the system dependence graph.
In Proceedings of the IEEE/ACM International Conference on Automated software
engineering (Antwerp, Belgium) (ASE ’10). ACM, New York, NY, USA, 457–466.
https://doi.org/10.1145/1858996.1859091

[36] Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are the
Code Snippets WhatWe Are Searching for? A Benchmark and an Empirical Study
on Code Search with Natural-Language Queries. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,

344–354.
[37] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and

Miryung Kim. 2018. Are code examples on an online Q&A forum reliable?: a
study of API misuse on stack overflow. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 886–896.

[38] Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim. 2019. Analyzing and sup-
porting adaptation of online code examples. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 316–327.

[39] Jing Zhou and Robert JWalker. 2016. API deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
266–277.

https://doi.org/10.1145/1858996.1859091

	Abstract
	1 Introduction
	2 Motivations from Facebook
	3 Usage Scenario
	4 Example generation algorithm
	4.1 Formal Definitions
	4.2 EG Algorithm
	4.3 Creating Multiple Common Usage Examples

	5 Evaluation
	5.1 RQ1: Survey with Facebook Developers
	5.2 RQ2: Quantitative Evaluation with Metrics
	5.3 RQ3: Live Usage in Facebook
	5.4 Discussion

	6 Related Work
	7 Conclusion
	References

