
JShrink: In-Depth Investigation into Debloating Modern Java
Applications

Bobby R. Bruce∗
University of California, Davis

U.S.A
bbruce@ucdavis.edu

Tianyi Zhang∗
Harvard University

U.S.A
tianyi@seas.harvard.edu

Jaspreet Arora
University of California, Los Angeles

U.S.A
jasa92@g.ucla.edu

Guoqing Harry Xu
University of California, Los Angeles

U.S.A
harryxu@cs.ucla.edu

Miryung Kim
University of California, Los Angeles

U.S.A
miryung@cs.ucla.edu

ABSTRACT
Modern software is bloated. Demand for new functionality has
led developers to include more and more features, many of which
become unneeded or unused as software evolves. This phenome-
non, known as software bloat, results in software consuming more
resources than it otherwise needs to. How to effectively and auto-
matically debloat software is a long-standing problem in software
engineering. Various debloating techniques have been proposed
since the late 1990s. However, many of these techniques are built
upon pure static analysis and have yet to be extended and evaluated
in the context of modern Java applications where dynamic language
features are prevalent.

To this end, we develop an end-to-end bytecode debloating frame-
work called JShrink. It augments traditional static reachability
analysis with dynamic profiling and type dependency analysis and
renovates existing bytecode transformations to account for new
language features in modern Java. We highlight several nuanced
technical challenges that must be handled properly and examine
behavior preservation of debloated software via regression test-
ing. We find that (1) JShrink is able to debloat our real-world Java
benchmark suite by up to 47% (14% on average); (2) accounting
for dynamic language features is indeed crucial to ensure behavior
preservation—reducing 98% of test failures incurred by a purely
static equivalent, Jax, and 84% for ProGuard; and (3) compared
with purely dynamic approaches, integrating static analysis with
dynamic profiling makes the debloated software more robust to un-
seen test executions—in 22 out of 26 projects, the debloated software
ran successfully under new tests.

CCS CONCEPTS
• Software and its engineering → Automatic programming;
Object oriented languages.

∗Bobby R. Bruce and Tianyi Zhang contributed equally to this paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409738

KEYWORDS
Java bytecode, size reduction, reachability analysis, debloating
ACM Reference Format:
Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, GuoqingHarry Xu, andMiryung
Kim. 2020. JShrink: In-Depth Investigation into Debloating Modern Java
Applications. In Proceedings of the 28th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409738

1 INTRODUCTION
The size and complexity of software has grown tremendously in
recent decades. Though largely beneficial, this has led to unchecked
bloat issues that are especially severe for modern object-oriented
applications due to their excessive use of indirection, abstraction,
and ease of extensibility. This problem of customizing and tailoring
modern applications to only used components, in an automated
fashion, is a long standing problem [27, 34, 45, 46, 52, 59, 61, 63, 67].

Prior work on code size reduction focuses primarily on C/C++
binaries [27, 34, 45, 46, 52, 68], motivated by the long-held belief
that C/C++ programs are easier to attack and are often choices
for developing embedded systems. However, with the rise of cloud
computing, Android-based smart-phones, and smart-home internet-
of-the-things, a managed, object-oriented language such as Java
is making its way into all important domains. Although reducing
the size of Java bytecode may not ultimately lead to a significant
improvement in a traditional stand-alone machine setting, its bene-
fit becomes orders of magnitude more significant in many modern
small and large-scale computing scenarios—smaller bytecode size
directly translates to reduced download size and loading time in
smartphones and reduced closure serialization time in big data sys-
tems such as Apache Spark; these are all important performance
metrics for which companies are willing to spend significant re-
sources in optimizing.

However, past work has not given much attention to Java, es-
pecially modern Java applications. Of particular interest to us is
Tip et al.’s work [61] in the late 1990s that proposes various de-
bloating transformations, which have since been utilized by other
researchers [6, 15, 30]. In surveying the literature, we find that their
effectiveness has yet to be systematically evaluated on a real-world
benchmark of modern Java applications. All previous implemen-
tations of those bytecode transformations relied on pure static

https://doi.org/10.1145/3368089.3409738
https://doi.org/10.1145/3368089.3409738

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

analysis to identify reachable code, hereby ignoring code reachable
through reflection, dynamic proxy, callbacks from native code, etc.
Recent studies find that dynamic language features are prevalent
and they pose direct challenges in the soundness of static analy-
sis [33, 39]. This unsoundness makes debloating unsafe—removing
dynamically invoked code and inducing subsequent test failures.
Furthermore, evaluations in prior work focus mostly on size reduc-
tion rather than behavior preservation, which raises a big safety
concern for adopting debloating techniques in practice.

Therefore, we undertake the ambitious effort of modernizing and
evaluating Java bytecode debloating transformations and quantify
the tradeoff between size reduction and debloating safety. We aug-
ment static reachability analysis with dynamic profiling to handle
new language features, e.g., dynamic proxy, pluggable annotation,
lambda expression, etc. We incorporate a new type dependency
analysis to account for various ways to reference types, like an-
notations and class literals, to ensure type safety. We extend four
kinds of debloating transformations—method removal, field removal,
method inlining, and class hierarchy collapsing into a fully auto-
mated, end-to-end debloating framework called JShrink.

To effectively evaluate those bytecode transformations, we built
an automated infrastructure to construct a benchmark of real-world,
popular Java applications. We applied a rigorous set of filtering cri-
teria: (1) reputation score based on the GitHub Star rating system,
(2) executable tests, (3) a Maven build script [42], which provides
a standardized interface for obtaining library dependencies and
regression testing, and (4) compatibility with the underlying byte-
code analysis framework, Soot [64]. The availability of runnable
test cases enables us to examine to what extent the behavior of orig-
inal software is preserved after debloating via regression testing.
Currently, the resulting benchmark includes 22 projects with SLOC
ranging from 328 to 99,779 and with up to 69 library dependencies.
We then apply JShrink to this benchmark to quantify size reduc-
tion, the degree to which test behavior could be preserved, and the
impact of Java dynamic language features.

RQ1 How much Java byte code reduction is achievable when
applying different kinds of transformations?

RQ2 To what extent, does JShrink preserve program correctness
when debloating software?

RQ3 What are the trade-offs in terms of debloating potential and
semantic preservation?

RQ4 How robust is the debloated software to unseen test execu-
tions such as new test cases?

JShrink reduces a project’s size (application and included library
dependencies) by up to 46.8% (14.2% on average). The method re-
moval component reduces the application by the most (11.0% on
average) followed bymethod inliner (2.1% on average), field removal
(1.0% on average), and class hierarchy collapser (0.1% on average).
A hybrid static and dynamic reachability analysis is necessary for
improving behavior preservation of debloated software. JShrink
does not break any existing tests for 22 out of 26 Java projects after
debloating, while three existing techniques, Jax [61], JRed [30], and
ProGuard [6] that rely on pure static analysis preserve behavior
for only 9, 11, and 15 projects respectively. While this compari-
son in terms of the number of projects may look marginal, 98% of
test failures encountered in Jax (83% for ProGuard) can be actually

removed by JShrink’s enhancements. This result implies the ef-
fort of handling new language features is absolutely necessary and
worthwhile for improving behavior preservation, which justifies
the need to address the long-standing debloating problem in the
modern context. We find that size reduction potential is minimally
impacted by this incorporation of dynamic reachability analysis.
We only sacrifice size reduction by 2.7% on average, while provid-
ing much stronger behavior preservation guarantees. To achieve
100% behavior transformation, we enable checkpointing—a feature
of JShrink where transformations are reverted if they are found to
break the semantics of a target program. Though this strategy in-
curs marginal losses in size reduction (0.9% on average), we believe
checkpointing to be a practical solution for balancing semantic
preservation and code size reduction benefits.

Our work makes the following contributions:

• We present JShrink, an end-to-end Java debloating frame-
work that modernizes four distinct bytecode transformations.
It includes significant and novel extensions to make debloat-
ing much safer in a modern context.

• We find bytecode reduction of up to 46.8% is possible, where
reachability-based method removal plays a dominant role in
size reduction. JShrink ensures that debloated software still
passes 98% of existing tests.

• We demonstrate the necessity of handling dynamic features
and ensuring type safety. JShrink removes 98% and 83% of
test case failures incurred by Jax [61] and ProGuard [6].

• We put forward an automated infrastructure of constructing
real-world Java applications with test cases, a build script,
and library dependencies for assessing debloating potential
and checking behavior preservation using tests.

The main research contribution of this paper is on systematiza-
tion of the community’s knowledge of Java debloating in the modern
era. As a reference point, several top conferences [14, 20, 50] have
already started to have a “systematization of knowledge” track, with
the goal to address the concern that “the community seems to lose
memory of things that have been done in the past.” With this paper,
we hope to bring existing debloating techniques into a contem-
porary context where dynamic features are prevalent and where
behavior preservation must be ensured and checked using tests. By
conducting rigorous evaluation using real-world benchmarks, we
provide evidence that prior debloating work indeed suffers from
poor behavior preservation. We then demonstrate that behavior
can be preserved to a significantly greater extent by incorporating
new components to explicitly address dynamic language features
and type safety. We make publicly available the JShrink source
code and additional resources necessary to replicate our results at
https://doi.org/10.6084/m9.figshare.12435542. As a companion piece
to this work, we have prototyped JShrink as an entirely online
SaaS, which we callWebJShrink [41].WebJShrink provides a rich
graphical user interface for the functionality described in this paper.
Additionally, it can offload debloating analysis and transformation
to the cloud and present users with a breakdown of where the bloat
exists within a target project.

https://doi.org/10.6084/m9.figshare.12435542

JShrink: In-Depth Investigation into Debloating Modern Java Applications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

2 BACKGROUND
Scope: Java Bytecode. The problem of software bloat has been a
center of research studies for more than a decade in the area of
performance tuning and optimization. Recently, there is a revived
interest—partly due to the need of cyber defense (e.g., US Navy’s
Total Platform Cyber Protection (TPCP) program [4])—in extending
traditional debloating techniques to reduce code size, improve run-
time performance, and remove attack surfaces for a wide spectrum
of software applications, including JavaScript programs [67], native
applications [46], and Docker containers [47].

In this paper, we focus on code size reduction as opposed to run-
time memory bloat that was the target of a large body of prior
work [43, 70, 72–74]. While code bloat exists commonly in a broad
range of applications, we focus on object-oriented programs (specif-
ically Java bytecode) as our scope for two reasons.

First, the culture of object orientation encourages developers to
use frameworks, patterns, and libraries even for extremely simple
tasks, resulting in a large number of classes and methods, which,
though not used at all during execution, still need to be loaded by
JVM due to type-induced dependencies. These classes and methods
consume extra space and memory, thereby negatively impacting
the performance of resource-constrained systems such as smart
phones or IoT devices. Furthermore, they can potentially contain
security vulnerabilities (e.g., gadgets in return-oriented program-
ming [13]), which can be exploited by remote attackers to execute
code segments that could not have been reached otherwise.

Second, many recent techniques [27, 45, 46, 52] on code bloat
target native x86 programs, aiming to reduce the size of executable
binaries. Native programs are significantly different from object-
oriented programs in terms of compilation and execution. Native
programs are statically compiled and linked, with most libraries
statically loaded. In many cases, a compiler can already remove
much of dead code. On the contrary, object-oriented programs
are often dynamically compiled and loaded; the ubiquitous use of
dynamic features such as dynamic class loading and reflection
dictates that a compiler would not know which classes to load until
the moment they are needed.

History: Static Bytecode Debloating. In the late 1990s, Tip et al. de-
veloped Jax, which included, so far, the most comprehensive set of
transformations to reduce Java bytecode, includingmethod removal,
field removal, method inlining, class hierarchy transformation, and
name compression [61]. They later introduced two more transforma-
tions, class attribute removal and constant pool compression in their
2002 journal paper [62]. Recent techniques are based on a subset
of these transformations to debloat new types of applications, e.g.,
Android [29] and Maven libraries in continuous integration [15].
JRed [30] and RedDroid [29] only support the method removal and
class removal transformations, while Molly [15] supports field re-
moval as well. These above mentioned techniques are outdated or
not publicly available. Furthermore, their evaluations did not quan-
tify the degree to which debloated software preserves semantics by
running existing tests. Behavior preservation is crucial for these
techniques to be adopted in practice.

Motivation for Modernizing Software Debloating and Assessing Be-
havior Preservation. Java offers a number of dynamic features widely
used in real-world programs [33]—reflection, dynamic class loading,

dynamic proxy, etc., which are highly challenging to model through
pure static analysis. Livshits et al. first investigated this problem in
2005 using points-to-analysis to statically resolve dynamic method
invocation targets [40]. Other attempts focused on a specific scope
of dynamic features such as reflection [38, 54], dynamic proxy [22],
etc. Most static analysis tools tolerate and encourage some level of
unsoundness to keep the analysis usable and scalable [39]. Land-
man et al. conduct a systematic literature review and an empirical
study to assess the effectiveness of 24 different static analysis tools
in the presence of real-world Java reflection usage [33]. They find
that static analysis is inherently incomplete and reflection cannot
be ignored for 78% of projects. This finding motivates our effort
to evaluate the safety of debloating techniques in the context of
dynamic language features. In Section 5.3, we quantify this benefit
of handling dynamic features—debloated software based on pure
static analysis would fail 3327 more tests in 26 projects.

Profile-Augmented Static Debloating and Checking of Behavior
Preservation. Existing debloating techniques only assess the code re-
duction and performance improvement achieved by different kinds
of bytecode transformations [6, 29, 30, 62]. None of them assess
the correctness of reduced programs by running existing test cases.
Furthermore, these techniques only perform static call graph anal-
ysis to approximate used code, and are incomplete in the presence
of various dynamic language features discussed in Section 3. Ergo,
test failures are inevitable, as dynamically invoked code could be
removed by debloating. In this paper, we take a profile-augmented
static debloating approach—we augment static reachability analysis
with dynamic reachability analysis using existing tests; we remove
code through static bytecode transformations; and we check behav-
ior preservation by running existing tests after debloating.

3 JSHRINK
We build an end-to-end bytecode debloating framework called
JShrink. Given the bytecode of a Java program and a set of test
cases, JShrink takes three phases to debloat bytecode and verify its
correctness. In Phase I, JShrink performs profile-augmented static
analysis to determine used and unused code. In Phase II, JShrink
applies four kinds of debloating transformations. Finally, JShrink
reruns the given test cases to check behavior preservation between
the original and the debloated version.

3.1 Profile Augmented Static Analysis
We apply three types of analyses—static reachability analysis, dy-
namic profiling, and type dependency analysis—to capture method
invocation, field access, and class reference relationships between
class entities. This is essential to determine unused code in the
presence of dynamic language features and ensure type safety of
debloated bytecode, especially in class hierarchy merging.
Static Reachability Analysis. Static call graph analysis is a stan-
dard method used by previous bytecode debloating techniques [29,
30, 62] to decide unused methods. Given a set of methods (e.g., main
methods, test cases, etc.) as entry points, it analyzes the body of
each method and identifies call sites in the method body. Call graph
analysis then constructs a directed graph for each entry method
and adds edges from the entry method to its callee methods. Those

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

callee methods are then treated as new entry points and the process
continues until no new methods are found, reaching a fix point.

Due to polymorphism in object-oriented languages, multiple
call targets could be invoked from a call site via dynamic dispatch-
ing, depending on the runtime type of the receiver object. Various
techniques have been proposed to approximate possible targets
of a dynamic dispatch, e.g., class hierarchy analysis (CHA) [17],
0-CFA [26, 53], rapid type analysis (RTA) [9], points-to analy-
sis [37, 51], etc. Specifically, JShrink leverages CHA to construct
call graphs, which identifies all corresponding method implementa-
tions of a callee in the subclasses of the declared receiver object type
and considers them as potential call targets. We perform a whole-
program analysis, including application code, imported third-party
libraries, and JRE, to build call graphs. In addition, we use ASM [12]
to analyze field accesses in each method and extend the call graphs
with field access information.
Dynamic Reachability Analysis.We initially considered using a
lightweight dynamic analysis approach called TamiFlex [11], as it is
a well known technique for addressing unsoundness caused by Java
reflection. Tamiflex instruments Java reflection call sites to capture
method calls and field accesses via reflection at runtime. However,
TamiFlex is designed for reflection APIs only and lacks support for
other dynamic features, leading to many test failures (Section 5.4).
To systematically account for dynamic features, we define a com-
prehensive list of dynamic features based on Sui et al. [58]. All the
following dynamic features except serialized class loading appear
in our benchmark of 26 modern Java applications, indicating the
necessity of handling them properly to ensure debloating safety.

(1) Reflection is a dynamic feature that enables users to dynami-
cally instantiate classes, access fields, and invoke methods. It
is widely used in modern Java context and is the foundation
for many frameworks such as Spring and JUnit [33].

(2) Reflection with ambiguous resolution refers to a special case
where multiple potential targets exist (e.g., overloadingmeth-
ods with different return types) for a dynamic invocation
via reflection. Such bytecode is often generated by bytecode
manipulation instead of by standard compilers.

(3) Dynamic classloading involves classes loaded through custom
class loaders.

(4) Dynamic proxy refers to the proxy feature that dynamically
creates invocation handlers for a class and its methods.

(5) Invokedynamic is a new bytecode instruction introduced in
Java 7 that enables dynamic method invocation via method
handlers. It is often used to support lambda expressions.

(6) Serialization refers to dynamically loaded classes via class
deserialization.

(7) Java Native Interface (JNI) is a framework that enables Java
to call and be called by native code. This benchmark includes
two programs that have callbacks from native code via JNI.

(8) sun.misc.Unsafe is a low-level Java API that can be used to di-
rectly manipulate JVM memory at runtime, e.g., dynamically
loading classes, throwing exceptions, swapping instances,
allocating new instances, etc.

We develop our own native profiling agent called Jmtrace, which
instruments method invocations using JVM TI APIs [3] to inject
logging statements at the entry and exit of each method in a class

Table 1: Capability of Handling Different Dynamic Features

Static Tamiflex Jmtrace

Reflection #
Reflection-ambiguous # G#
Dynamic class loading #
Dynamic proxy # #
Invokedynamic G# G#
JNI # #
Serialization #
Unsafe # G#

during class loading. Table 1 compares the capability of handling dif-
ferent kinds of dynamic features between static call graph analysis,
TamiFlex, and Jmtrace. JShrink runs given test cases and identifies
dynamic method calls that do not exist in static call graphs but
are invoked during test execution. Then JShrink initiates another
round of static reachability analysis using those dynamically in-
voked methods as entry points. Note that we only use dynamic
profiling to augment static analysis, instead of replacing static analy-
sis with dynamic analysis. In case of low test coverage from existing
tests, this augmentation lets JShrink retain functionality statically
reachable from user-specified entry points, such as public methods,
mainmethods, and method entries from existing test cases. It should
be noted that while Jmtrace improves our reachability analysis, its
effectiveness is entirely dependent on the coverage of the tests
provided. A test suite with low code-coverage will have a lower
chance of uncovering dynamic features, which may utilized by an
end-user, than a test suite with higher code-coverage.

JVM TI APIs only permit instrumentation of method bodies.
As such Jmtrace is not capable of identifying fields dynamically
accessed via reflection. Therefore, we customize TamiFlex to in-
strument only reflection calls related to field accesses and use it
together with Jmtrace. Instrumentation to other reflection calls is
disabled to avoid redundant profiling.
Type Dependency Analysis. Traditional reachability analysis only
keeps track of invoked methods and accessed fields, which is suffi-
cient for method and field removal. Previous debloating techniques
consider a class unused if none of its methods or fields are reach-
able from entry points [29, 30, 61]. However, we find this definition
of unused classes is problematic in practice. Modern Java allows
developers to reference classes in various ways, not just limited to
variable and method declaration or class inheritance, but through
pluggable annotations, class literals, throws clauses, etc. A program
can thereby reference a class without instantiating it, or directly
access any of its methods of field members. In such a case, removing
reference-only classes that do not have any method or field usage
will cause a bytecode verification failure during class loading in the
JVM or lead to a ClassNotFoundException at runtime. It is crucial to
ensure type safety during class removal and class hierarchy collaps-
ing. Therefore, JShrink builds type dependency graphs by scanning
through Java bytecode using ASM. If a class A is referenced by a
class B, we add an edge from B to A in the graph.

Based on static analysis, profiling of dynamic features, and type-
dependency analysis, JShrink determines unused code at four gran-
ularities, listed below. We use “class” as a general term for concrete
classes, abstract classes, and interfaces in Java.

JShrink: In-Depth Investigation into Debloating Modern Java Applications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

• Unused Method: A method is unused if it is not reachable
from any given entry point in the call graphs.

• Unused Field: A field is unused if it is not accessed by a
used method in a call graph or dynamically accessed via
reflection.

• Unused Class: A class is considered unused if none of the
following three conditions are satisfied: (1) A method in the
class is reachable from given entry points; (2) A field in the
class is reachable from given entry points; (3) A descendant
of this class in the class hierarchy is used.

• Reference-only Class: A class is not used but referenced
by another used or reference-only class based on given type
dependency graphs. This is a special category of classes not
handled safely by existing debloating techniques [29, 30, 61].
In prior work, unused classes are completely removed if none
of their class members are reachable. However, we find that
this is an unsafe choice, causing many ClassNotFoundErrors
at runtime. Therefore, JShrink partially debloats reference-
only classes to ensure type safety, as explained in class hier-
archy collapsing.

3.2 Bytecode Debloating Transformations
Inspired by Tip et al. [61], JShrink provides the following bytecode
debloating transformations.
Unused Method Removal. JShrink provides three method re-
moval options—(1) completely remove the definition of an unused
method, (2) only remove the body of an unused method but keep
the method header, and (3) replace the method body with a warn-
ing statement indicating the method is removed. To safely wipe
a method body, JShrink injects bytecode instructions to return
dummy values if the return type is not void. The first option could
achieve maximum code size reduction at the cost of safety, as it
may lead to NoSuchMethodError if a removed method is triggered
in future usages. With the second and the third options, unused
methods are still defined in bytecode and thus programs will fail
gracefully without catastrophic program crashes. The third option
is the most informative, as it lets a user know which method is
invoked at runtime but not captured by static analysis or given test
cases. Our results in Section 5 uses the first option as default, but a
user may choose the other two options in JShrink.
Unused FieldRemoval.Given an unused field, JShrink completely
removes its definition. Note that this transformation should be used
in pair with method removal. If those unused methods accessing an
unused field are not removed, JVM will report FieldNotFoundError
that crashes the debloated software. Enabling this transformation
alone requires fine-grained transformation within a method body,
e.g., removing all field access instructions and subsequent instruc-
tions with data dependencies to the field.
Method Inlining. JShrink inlines a method if the method has only
one call site in the call graph and the method is the only call target
the callsite. The former ensures that JShrink does not introduce
code duplication during inlining, while the latter is crucial for
semantic preservation in case of polymorphism.

Type safety of method inlining is widely discussed in the com-
piler literature [24, 25]. To ensure type safety, JShrink applies three

constraints. First, JShrink does not inline class constructors. Sec-
ond, JShrink does not inline native methods, abstract methods,
and interface methods as they do not have method bodies. Third,
JShrink does not inline a method if it accesses other class mem-
bers that become invisible after inlining (detailed in Section 3.3).
JShrink also does not inline synchronized methods.
Class Hierarchy Collapsing. JShrink performs two basic trans-
formations to collapse class hierarchy. The first, more sophisticated,
transformation is to merge a base class X and a subclass Y , if Y
is the only used subclass of X . JShrink checks if, for any over-
ridden method m′ in Y , and the corresponding original method
m, only one of eitherm andm′ is used. If both are used, JShrink
does not collapse the classes. If this rule was not enforced, JVM
would not delegate an invocation onm to its overridden method,m′,
based on the real type of the receiver object at runtime. The second
transformation is to remove unused classes. For a reference-only
class, JShrink removes its class members and only retains the class
header to avoid ClassNotFoundError. If a reference-only class is a
concrete class, JShrink injects a default constructor as enforced by
JVM. If a reference-only class is an interface, JShrink keeps those
method declarations whose implementations in a subclass are used.

To implement the first transformation of merging a subclass Y
into a base classX , JShrink takes three steps. First, it moves all used
method and field members ofX intoY while removing unused class
members in Y . Secondly, it updates all references to the merged
subclasses, their method and field members, to their new locations
after merging. During the merging and updating process, name
conflicts may occur due to method overloading rules enforced by
Java. For instance, class B may have overloaded methods void m(A

a) and void m(SubA a). After merging SubA to A and updating the
parameter type of the second method in B, the signatures of the
two methods become identical. Therefore, to handle name conflicts,
JShrink renames methods and further updates references to those
renamed methods as needed. Since class constructors cannot be
renamed, in instances where naming conflicts with them, JShrink
adds a new dummy integer parameter to “rename” a constructor
and update all call sites of the renamed constructor by pushing an
integer value, 0, on the stack.
Checkpointing.While experimentingwith real-world Java projects,
we note that test failures may still occur due to rare but challeng-
ing corner cases caused by known limitations of JVMTI and Soot
(Section 5.3). Therefore, JShrink implements an additional strategy
of checkpointing to ensure safety. It checkpoints each type of de-
bloating transformation, runs tests, and reverses failure-inducing
transformations.

3.3 Implementation and Nuanced Extensions
We implement those bytecode debloating transformations using
Soot [64]. We use the CHA implementation in Soot for static analy-
sis, and ASM [12] to gather field accesses. We implement Jmtrace
using JVM TI APIs. We highlight several nuanced extensions that
we designed to ensure type safety and behavior preservation.

(1) Co-variant return type. From Java 5 onward, JVM supports co-
variant return types, which allow an overridden method to
have a return type different to the original. Therefore, instead
of simply comparing whether two method signatures are

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

the same, JShrink accounts for co-variant return types to
determine overridden methods when merging two classes.
Otherwise, JVM will throw a verification error.

(2) Class member visibility. When inlining a method or merg-
ing a class, it is important not to break access controls. If
methodm from class A is to be inlined into class B, JShrink
enforces that m does not call other private methods in A.
Otherwise, JVM will raise IllegalAccessError since those
private methods are not visible to B. Similarly, if subclass
A is in a different package compared with its superclass B
and A contains a protected method that is called by another
class C in the same package as A, merging A into B will
cause IllegalAccessError since A.m becomes invisible to C
after moving to a different package. Before merging a class
to a different package, JShrink checks whether a protected
method or field will become invisible after merging.

(3) Lambda expression. Lambda expressions are introduced in
Java 8. They are anonymous functions that can be passed as
parameters to method calls. For example, in v.forEach(x ->

A.foo()), the lambda x -> A.foo() is passed to the forEach

method and could be executed at runtime. Therefore, the
method call foomust be captured by call graph analysis. This
expression can be rewritten to v.forEach(A::foo(x)) using
the new method reference operator “::”. JShrink checks for
both cases and adds missing edges between the caller and
method calls in a lambda expression to call graphs.

(4) Class literals. Class literals such as X.class are compiled to
string constants in Java bytecode. It is critical to identify class
references via class literals and add them to type dependency
graphs to avoid ClassNotFoundError. JShrink identifies class
literals by matching “*.class” against string constants used
in a class. JShrink also updates the class literal of a merged
class to its superclass to avoid ClassNotFoundError.

(5) Method inheritance. Merging classes in presence of both
method overriding and inheritance could be problematic.
Suppose a base class A inherits a method m from its super
class B and its subclass C overrides m. If A.m is reachable from
an entry point, it is hard to decide whether A.m is actually in-
voked on A objects or B objects due to polymorphism. If A.m is
only invoked on A objects, we can safely merge class C into B

even when the overridden method C.m is also used. However,
if A.m is invoked on B objects, moving C.m into Bwill alter the
dynamic patching behavior. In such a case, JShrink make
a conservative choice of not merging a subclass to its base
class, if (1) the base class inherits a used method from its
superclass or an ancestor, (2) the subclass also overrides the
same method, and (3) the overridden method is also used.

In summary, compared with prior work, JShrink makes the fol-
lowing major extensions to handle modern Java: (1) augmenting
static reachability analysis with JVM TI based dynamic profiling,
(2) incorporating type dependency analysis, (3) extending method
inlining and class hierarchy collapsing transformations to ensure
type safety, and (4) all nuanced extensions in Section 3.3 to handle
new language features properly.

4 BENCHMARK
We build an automated infrastructure to construct a benchmark. It
uses the Google BigQuery API [2] to query GitHub projects and
automatically applies a rigorous set of filtering criteria listed below
to include real-world, popular Java projects on GitHub.

• Popular Java projects. To obtain popular Java projects, our
infrastructure chooses projects with at least 100 GitHub stars.

• Automated build system. Our infrastructure requires a stan-
dardized API to automatically resolve library dependencies,
compile target projects, and run test cases. The current im-
plementation supports Maven [42], a popular build system
used in Java, but could be easily extended to support other
build systems such as Gradle.

• Compilable. After downloading those projects, we exclude
those that induce build failures in our environment (an Ama-
zon r5.xlarge instance with Ubuntu 18.04 and JDK 1.8.0),
due to specific hardware or library configurations.

• Executable tests. We rely on test cases to evaluate to what
extent debloated software preserves its original behavior.
Therefore, after compiling a project, our infrastructure runs
the Maven test command and parses generated test reports
to identify the number of test cases and test failures. Projects
with no test or any test failure are excluded.

• No JVM verification errors. Note that, when Soot writes code
from its intermediate language, Jimple, back to bytecode, it
automatically applies several optimizations such as constant
pool compression. Therefore, we first pre-process all Java
bytecode using Soot to fairly measure code size reduction
achieved by JShrink. In this pre-processing step, fatal JVM
verification errors could occur in some Java projects. We
discard those projects due to JVM verification errors.

• No Timeout. Our infrastructure enforces a timeout constraint
on the profile-augmented static analysis, since generating
call graphs for some projects may take an excessively long
time. We set this timeout to 10 hours.

Table 2: Project statistics

Stars Tests Libs SLOC (App Only) Size (KB: App+Libs)1

Max 16,209 1,081 69 99,779 114,312
Min 188 1 0 328 30
Mean 3,135 237 15 14,729 15,734
Median 2,000 60 9 5,863 3,193
Total 69189 5213 332 324,035 346,160
SD 3,595 370 17 22,288 30,766

The final benchmark in Table 3 covers a wide spectrum of Java
programs, including popular libraries, web applications, develop-
ment frameworks, and desktop applications. Table 2 summarizes
the statistics for those 26 benchmark programs. All are popular
GitHub projects with a median of 2,000 stars. The average num-
ber of test cases and external library dependencies are 237 and
15 respectively. The total size of the projects (inclusive of library
dependencies) range from 30KB to 112MB with a median of 3MB.

1The total size is that of project and library dependencies in their compiled states.

JShrink: In-Depth Investigation into Debloating Modern Java Applications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Cobertura [1] reports 34.1% statement coverage by their existing
tests, which we use for assessing behavior preservation after de-
bloating. In selecting our benchmark, we deliberately choose a wide
variety of domains with varying size. We are aware of no language
construct unique to specific domains that would make JShrink an
unworkable solution elsewhere.

5 EXPERIMENTS
We run JShrink on the benchmark of 26 Java projects and compare
it with three existing techniques to answer the following questions:
RQ1 How much Java byte code reduction is achievable when

applying different kinds of transformations?
RQ2 To what extent program semantics is preserved when de-

bloating software?
RQ3 What are the trade-offs between debloating potential and

preservation of software semantics?
RQ4 How robust is the debloated software to unseen executions

such as new test cases?

5.1 Experiment Setup and Baselines
Our experiments run on an Amazon r5.xlarge instance (3.1 GHz
4-core Intel Xeon Platinum processor, 32GB Memory) with Ubuntu
18.04 and JDK 1.8.0 installed. We choose this standard cloud-based
setup to ease the replication effort for other researchers. We com-
pare JShrink with Jax [61], JRed [30], and ProGuard [6]. Since both
Jax and JRed are not available, we faithfully re-implement them
based on their paper descriptions.
Jax includes the most comprehensive set of bytecode transforma-
tions. To replicate Jax, we adapt JShrink to use static call graph
analysis only and disable Section 3.3’s extensions. Jax imposes an
additional constraint that requires unused, to-be-removed classes
not to have any derived classes. So we modify the class collapsing
transformation accordingly.
JRed only supports method removal and class removal. Like Jax,
JRed relies on static call graph analysis only. To replicate JRed, we
adapt JShrink to use static call graph analysis exclusively, only
enable unused method removal and unused class removal, and
disable all extensions from Section 3.3.
ProGuard is a public software that shrinks and obfuscates Java
bytecode. It has been integrated into Android SDK and is widely
used to optimize Android applications. Similar to Jax and JRed, Pro-
Guard performs static analysis only. It does not construct call graphs
but instead traverses bytecode instructions in a given method to
calculate a transitive closure of all referenced classes, methods, and
fields. ProGuard has some static analysis support for Java reflection
but is not accurate, since it only analyzes hardcoded strings passed
into a pre-defined set of reflection APIs. As ProGuard is publicly
available, we evaluate it directly. We use version 6.3.

5.2 RQ1: Code Size Reduction
To answer RQ1, we apply the four transformations in JShrink on
each project individually and en-masse. The evaluations of Jax [61]
and JRed [30] in their original papers only use main methods as the
entry points. However, we find that many projects (such as gson
and java-apns in our benchmark) are library projects whose public
classes and methods are potentially invoked by downstream client

projects. Therefore, in our experiments, we make a conservative
choice of setting all public methods, mainmethods, and test methods
as entry points to maximally approximate possible usage.

We report the size reduction of bytecode only, excluding resource
files. Column Transformations in Table 3 shows the size reduction
ratio achieved by each transformation. Compared with the other
three transformations, method removal (ColumnMR) is the most
effective in size reduction, achieving an average of 11.0% reduction
(up to 42.2%). Method inlining (Column MI) and field removal (Col-
umn FR) reduce bytecode by 2.1% and 1.0% respectively on average.
Class hierarchy collapsing (Column CC) only achieves a minimal
reduction of 0.1% on average (up to 0.6%).

Column Code Size Reduction in Table 3 shows the size reduc-
tion achieved by all transformations, compared with Jax, JRed, and
ProGuard. Specifically, Column JShrink-C shows the size reduc-
tion when enabling the checkpoint feature to automatically reverse
failure-inducing transformations. When applying all transforma-
tions together, JShrink can reduce a project by up to 46.8% (14.2%
on average). Checkpointing only has a minimal impact on size re-
duction (0.9% less reduction) while achieving 100% semantic preser-
vation. JRed has the smallest size reduction (13% on average). This is
because JRed only supports two kinds of transformations, method
removal and class removal. Though both Jax and JShrink support
the same set of transformations, Jax achieves a larger size reduc-
tion, 17.0% in comparison to 14.2% in JShrink for two reasons. First,
JShrink retains dynamically called methods and loaded methods.
Second, JShrink partially debloats reference-only classes, while
Jax completely removes them.

ProGuard crashes on two projects due to a known bug while per-
forming partial evaluation on strings [5]. Compared with JShrink,
ProGuard reduces code more aggressively (33.8% on average). A
main reason is that it performs static reference-based analysis, pro-
ducing a smaller set of reachable methods. Indeed, for some projects
(e.g., jvm-tools and gwt-cal), ProGuard achieves significantly more
code reduction than JShrink without breaking any tests. However,
in general, ProGuard causes 6X more test failures than JShrink, as
elaborated in the next section.

5.3 RQ2: Semantic Preservation
Code size reduction, however, is only meaningful if the semantics
of the target program is preserved. To assess how closely JShrink
preserves program semantics, we run existing test cases before and
after debloating. A program is considered to have broken semantics
if there exist any test failures after debloating. Column Test Failures
shows the semantic preservation capability of JShrink, Jax, JRed,
and ProGuard. “✓” denotes a project with no test failure after
debloating, while “×” denotes that test failures exist after debloating.
The numbers in brackets show the numbers of failing tests.

When checkpointing is enabled, JShrink achieves 100% behav-
ior preservation as expected. Disabling checkpointing leads to test
failures in 4 projects only. Checkpointing does not cause signifi-
cant loss in size reduction, because a single kind of transformation,
class hierarchy collapsing, leads to most test failures (75 of 81) while
contributing the least in size reduction (0.1% on average). The root
cause is due to existing bugs in Soot. Soot throws runtime excep-
tions when rewriting some classfiles, which interferes our ability

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

Table 3: Results of debloating the benchmark projects.

Application Tests
Transformations Code Size Reduction Test Failures

MR FR CC MI JRed Jax ProGuard TamiFlex JShrink JShrink-C JRed Jax ProGuard TamiFlex JShrink JShrink-C
jvm-tools 102 1.7% 0.6% 0.0% 2.0% 2.2% 5.2% 12.2% 4.2% 4.2% 4.2% ✓ (0) × (102) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
bukkit 906 15.4% 1.2% 0.2% 1.9% 19.8% 24.0% 72.7% 18.5% 18.5% 18.5% × (906) × (906) × (3) × (39) ✓ (0) ✓ (0)
qart4j 1 42.2% 3.7% 0.2% 0.9% 58.0% 64.2% 84.8% 46.8% 46.8% 46.8% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
dubbokeeper 1 13.8% 1.5% 0.2% 1.9% 17.2% 20.9% 73.1% 17.3% 17.3% 17.3% × (1) × (1) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
frontend-maven-plugin 6 18.7% 1.6% 0.2% 2.0% 24.3% 28.2% 65.8% 22.4% 22.4% 22.4% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
gson 1050 0.3% 0.8% 0.0% 4.4% 0.4% 5.8% 2.3% 5.5% 5.5% 5.5% × (1) × (1) × (58) ✓ (0) ✓ (0) ✓ (0)
disklrucache 61 0.1% 1.3% 0.0% 0.2% 0.1% 1.9% 0% 1.7% 1.7% 1.7% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
retrofit1-okhttp3-client 9 8.4% 0.9% 0.0% 2.2% 11.0% 14.5% 22.7% 12.3% 11.5% 11.5% × (9) × (9) × (3) × (3) ✓ (0) ✓ (0)
rxrelay 58 15.7% 1.1% 0.0% 0.7% 17.5% 19.3% 63.5% 17.5% 17.5% 17.5% × (28) × (58) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
rxreplayingshare 20 20.1% 0.9% 0.2% 0.9% 24.1% 27.5% 91.9% 22.1% 22.1% 22.1% × (20) × (20) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
junit4 1081 1.7% 0.5% 0.1% 4.8% 2.3% 8.0% 9.0% 6.5% 6.8% 1.4% × (1081) × (1081) × (43) × (17) × (13) ✓ (0)
http-request 163 0.2% 2.6% 0.0% 3.8% 0.3% 6.7% 0.1% 6.6% 6.6% 6.6% ✓ (0) ✓ (0) × (15) ✓ (0) ✓ (0) ✓ (0)
lanterna 34 0.2% 0.8% 0.6% 1.9% 0.2% 2.4% 0% 1.9% 2.0% 2.0% ✓ (0) × (34) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
java-apns 111 13.8% 1.3% 0.3% 3.4% 16.0% 21.9% 34.4% 18.9% 18.9% 18.9% × (9) × (107) × (18) ✓ (0) ✓ (0) ✓ (0)
mybatis-pagehelper 106 20.1% 1.4% 0.1% 2.3% 25.5% 28.6% 65.0% 24.7% 23.9% 21.6% × (106) × (106) × (83) × (100) × (55) ✓ (0)
algorithms 493 0.0% 0.3% 0.0% 5.1% 0.0% 5.6% 3.8% 5.5% 5.5% 5.5% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
fragmentargs 15 8.9% 2.7% 0.0% 0.1% 11.0% 14.7% 16.8% 11.6% 11.6% 0.0% × (4) × (4) × (4) × (4) × (4) ✓ (0)
moshi 835 0.2% 0.0% 0.0% 0.0% 0.2% 0.3% 58.2% 0.2% 0.2% 0.2% × (835) × (835) × (52) ✓ (0) ✓ (0) ✓ (0)
tomighty 26 16.5% 1.5% 0.1% 2.2% 20.7% 24.7% 56.4% 20.2% 20.1% 20.1% ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
zt-zip 121 5.4% 2.4% 0.6% 2.9% 6.4% 13.3% 16.4% 11.3% 11.3% 11.3% × (110) × (110) × (115) ✓ (0) ✓ (0) ✓ (0)
gwt-cal 92 16.5% 0.7% 0.1% 0.3% 19.4% 20.8% 31.6% 17.5% 17.5% 17.5% × (3) × (3) ✓ (0) ✓ (0) ✓ (0) ✓ (0)
Java-Chronicle 8 0.0% 1.1% 1.0% 1.4% 0.0% 3.5% 0.0% 3.5% 3.5% 3.5% ✓ (0) ✓ (0) ✓ (0) × (8) ✓ (0) ✓ (0)
maven-config-processor-plugin 77 25.4% 3.2% 0.3% 1.0% 31.5% 35.3% 82.0% 29.8% 29.8% 29.8% × (21) × (21) × (20) ✓ (0) ✓ (0) ✓ (0)
jboss-logmanager 42 11.1% 0.5% 0.04% 1.9% 11.7% 14.3% 17.0% 26.2% 13.6% 13.6% ✓ (0) ✓ (0) × (24) ✓ (0) ✓ (0) ✓ (0)
autoLoadCache 11 16.5% 1.5% 0.3% 1.9% 18.2% 21.9% Crash 20.2% 20.2% 16.5% × (10) × (10) Crash × (7) × (9) ✓ (0)
tprofiler 3 4.7% 4.1% 0.0% 1.4% 6.5% 13.5% Crash 10.2% 10.2% 10.2% ✓ (0) ✓ (0) Crash ✓ (0) ✓ (0) ✓ (0)
Total 5432 — — — — — — — — — — 3174 3408 496 170 81 0
Mean 209 11.0% 1.0% 0.1% 2.1% 13.0% 17.0% 33.8% 15.0% 14.2% 13.3% — — — — — —
Median 60 9.9% 1.23% 0.1% 1.9% 11.4% 14.6% 19.8% 14.8% 12.6% 12.5% — — — — — —

to update all classfiles that reference a merged class when collaps-
ing class hierarchies. By simply reverting failure-inducing class
collapsing transformations, JShrink avoids most test failures.

By contrast, JRed, Jax, and ProGuard cause test failures in 15,
17, and 11 projects. Without checkpointing, only 81 of 5432 test
cases fail after debloating using JShrink. This gives JShrink a
test pass rate of 98.5%, in comparison to 41.6%, 37.3%, and 91%
by JRed, Jax, and ProGuard respectively. This indicates that incor-
porating dynamic profiling, type-dependency analysis, and those
nuanced extensions are crucial to semantics preservation. The ma-
jority of test failures caused by JRed and Jax are due to fatal JVM
NoClassDefFoundError and ClassNotFoundException verifica-
tion errors that crash the entire test execution — for JRed, 10 of 26
projects fail with these fatal exceptions, while using Jax results in 13
projects failing fatally. For ProGuard, most test failures are caused
by imprecise static analysis. Though ProGuard strives to handle
Java reflection by statically analyzing string arguments passed into
a predefined set of reflection APIs, such static analysis is neither
accurate nor complete, which justifies our choice of augmenting
static analysis with profiling for dynamic language features.

5.4 RQ3: Trade-offs
To understand the trade-offs between debloating potential and se-
mantic preservation, we vary entry points for JShrink’s reachabil-
ity analysis and compare with an alternative profiler TamiFlex [11].
Entry point analysis. As discussed in Section 3, JShrink functions
by running call-graph analysis on entry points. These entry points
are a union of two sets: the set of dynamically accessed methods
determined via runtime profiling, and the set of all public, main,
and test methods, determined via static analysis. While the former

is dependent on the test suite of each project, the latter can be set
manually. E.g., a user of JShrinkmay determine that only the main
entry point needs to be processed as it is the only known entry
point to the application. Such decisions may result in a smaller
call-graph and thus increase the debloating potential of a target
project. On the other hand, selecting fewer entry points can make
the debloated software less robust without complete knowledge
of used methods. For example, a method may be removed despite
being used by the project via some unexplored entry point.

To understand this trade-off, we run JShrink on all our projects
using the main method as an entry point, the public methods, and
just the test methods alone as entry points. Table 4 shows the
experiment results with the baseline where all such methods are
considered as entry points. The size reduction is consistently larger
when we select a subset of entry points to the reachability analysis.
When targeting the test entry points, projects can be debloated
by 36.6% more than our conservative baseline. Though, in every
case where a subset of entry points are chosen, the number of test
failures increases. While only 1.5% of all tests fail when targeting
all entry points, this figure jumps to 3.4%, a 70% increase in test case
failures, when selecting a subset. We therefore conclude that the
size reduction and robustness depend on what we choose as entry
points. If preserving program semantics is a hard constraint, we
suggest the conservative choice of setting all possible entry points.

Table 4: Entry Point Analysis.

Entry Point Size Reduction Test Failures
Main, Test, & Public 14.2% 81 (1.5%)
Main Only 18.6% 186 (3.4%)
App Public Only 18.3% 157 (2.9%)
Test Only 19.4% 187 (3.4%)

JShrink: In-Depth Investigation into Debloating Modern Java Applications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Jmtrace vs. TamiFlex. As discussed in Section 3.1, our native profiler,
Jmtrace, uses JVMTI to instrument method bodies in any classes
loaded in a JVM. Therefore, it can capture all dynamically invoked
methods. By contrast, TamiFlex [11] only instruments a predefined
set of reflection APIs and thus is considered more light-weight. The
two TamiF. columns in Table 3 show the size reduction and test
failures caused by the TamiFlex variant of JShrink. TamiFlex only
identifies a subset of dynamic method calls captured by Jmtrace
and thus should trim more unreachable methods. However, the size
reduction improvement achieved by TamiFlex is trivial, only 0.06%
on average. On the other hand, JShrink with TamiFlex breaks 52
more test cases in comparison to JShrink with Jmtrace.
An in-depth inspection. To investigate which extension aid in im-
proving behavior preservation, we choose one project, java-apns
for a thorough investigation into each failure. This is because there
are a total of 3174 and 3408 test failures for JRed and Jax respec-
tively; thus, it would be prohibitively time consuming to examine
all test failures individually for all projects. Java-apns produces 107
test failures after Jax but was error-free when processed by JShrink.
We manually examine and determine what extension was responsi-
ble for rectifying the failure. Incorporation of Jmtrace reduced test
failures by 59%. The rest of the enhancements such as type depen-
dency analysis all contribute to improving a test pass rate, but none
was the dominant contributor. This result indicates that handling
dynamic language features is absolutely necessary, while each of the
remaining enhancements contributes to behavior preservation.

5.5 RQ4: Robustness
Finally, we assess the robustness of debloated software by running
new tests not seen during dynamic profiling. We use 80% of the
original test suite in each project for profiling and debloating. Then
we use the remaining 20% as a hold-out test set for examining the
robustness of each debloated project. We build this 20% hold-out
set by selecting classes with the least number of tests in order. This
leaves fewer classes for dynamic profiling and thus we conserva-
tively estimate the number of test successes. For the three projects
with one test case, we only use their tests, as is. The hold-out test
set contains 42 test cases on average.

JShrink does not cause any test failures in 22 out of 26 projects
when running the debloated project on its hold-out test set. JShrink
causes 3, 5, 45, and 1 test failures in the remaining four projects
respectively—retrofit1-okhttps3-client, junit, java-apns, and
autoLoadCache. This implies that, though there is a chance that
unseen executions may cause runtime exceptions in debloated soft-
ware, the chance is relatively low — only 4 out of 26 projects (15%)
in our benchmark. This should be attributed to the design choice
of using both static reachability analysis and dynamic profiling in
JShrink. While dynamic profiling precisely captures all invoked
methods in previous executions and handles dynamic features,
static reachability analysis over-approximates other potential reach-
able code from given entry points, improving the robustness of
debloated software compared to purely dynamic profiling alone.

6 DISCUSSION
While we do not claim that debloating transformations discussed
in this paper are 100% our own creations, we made significant ex-
tensions to make debloating much safer and evaluate them in a

modern context. In previous work, behavior preservation of de-
bloated programs is never evaluated. Our contribution is to give
the software engineering community better understanding of how
these debloating transformations perform, especially in terms of
behavior preservation, in real-world applications with dynamic lan-
guage features. We provided evidence that existing transformations
suffered from poor behavior preservation. By further incorporat-
ing new components to ensure type safety, we demonstrated that
behavior can be preserved to a significantly greater extent. While
our techniques lack an exotic flair, they undeniably work and we
are the first to demonstrate this with rigorous evaluation.
Attack Surface Removal. Software debloating could also poten-
tially remove security vulnerabilities in a program. To demonstrate
the benefit of attack surface removal, we conduct a case study of a
gadget-chain deserialization vulnerability in Java [7]. This vulnera-
bility allows remote attackers to execute arbitrary commands by
carefully crafting a payload of serialized Java classes (i.e., gadget
chains). A gadget chain includes a “kick-off” gadget that is executed
during or after deserialization, a “sink” gadget that executes arbi-
trary commands during instantiation, and other auxiliary gadgets
that create a chain from the start gadget execution to end gadget.
Frohoff et al. discovered a collection of 31 distinct gadget chains
in JDK and popular Java libraries and present a proof-of-concept
tool called ysoserial that automatically generates payloads of
these gadget chains [8]. Based on these known gadget chains, we
automatically scan libraries and classes and detect the presence of
gadget chains that can be potentially exploited by remote attackers.

If a method or a class in a gadget chain is successfully removed,
the gadget chain will be effectively removed and the attack surface
shall cease to be a threat. Running our gadget-chain analysis, we
detect two gadget chains in one project, dubbokeeper in our bench-
mark. Both gadget chains involve unsafe classes and methods in
imported libraries from Spring Framework, a widely used web ap-
plication framework in Java. These gadget chains have also been
reported multiple times as security vulnerabilities, e.g., CVE-2017-
8045, CVE-2017-3203, CVE-2016-2173. After applying JShrink, both
gadgets in dubbokeeper are removed. Hence exploiting the same gad-
get chain in dubbokeeper will only lead to ClassNotFoundException,
rather than arbitrary code execution after debloating. Jax and JRed
removed both gadget chains but at the cost of test failures, and
ProGuard removed only one of the two. This brings an important
insight that JShrink is more successful than existing techniques in
terms of both behavior preservation and gadget chain removal.
Threats to validity.While replicating bytecode transformations
described in Jax [61], our implementation is different from [61]
is two aspects. First, when merging two classes, the original Jax
algorithm requires that the number of reachable field members in
the new class aftermerging does not increase, in order to ensure that
the new class did not consumemore memory when instantiated.We
ignore this constraint in JShrink, because ourmain goal is to reduce
code size not memory consumption. Second, method inlining in
Jax is originally implemented by simply adding a final modifier
to an inlinable method so that the just-in-time (JIT) compiler in
JVM can inline the method. However, this is tricky as JIT compilers
also apply their own heuristics to decide whether a method, though
declared as final, could be inlined. So we implement our own

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

inlining transformation using Soot’s APIs. This potentially produces
better results than the original implementation in [61].

In Section 5, we reimplement Jax and JRed by adapting JShrink
based on their papers. The size reduction numbers reported from
their original Jax and JRed papers are higher, at 48.7% and 44.5% re-
spectively. This is because we conservatively choose all public, main,
and test methods as entry points, while their original experiment
used main methods as the entry points only.
Limitation. Our goal is to assess size reduction potential based on
both static analysis and dynamic profiling using developer-written
tests. We acknowledge that developer-written tests may suffer from
low-coverage issues and thus cannot represent possible execution
scenarios that may be encountered in the future. To investigate
this issue, we examine how robust a debloated project is to unseen
executions in a hold-out test set in Section 5.5. The result shows
that though unseen executions indeed cause runtime exceptions,
the chance of running into such issues is relatively low (15%). This
is because static reachability analysis and dynamic profiling syn-
ergistically work together to handle unseen executions–dynamic
profiling already provides good hints of dynamically invoked method
even with an incomplete set of test cases, and static reachability anal-
ysis over-approximates reachable code from all possible entry points.
The solution to reducing this rate of failure is to increase test case
coverage by either by manually adding tests, or via automated
regression test generation tools, such as EvoSuite [23].

7 RELATEDWORK
Code Bloat. Code size reduction is an important development ac-
tivity in areas such as networking and embedded systems. A large
body of work exists on code compression [16, 19, 32, 35, 36] and
code compaction [18, 65, 66] to reduce the size of binary code for
efficient executions on embedded hardware with limited memory.
We refer interested readers to Beszédes et al. [10] for a detailed
survey. Program slicing [28, 49, 56, 57, 60] is a dataflow-based static
technique that computes, from a given seed, a subset of statements
that can still form a valid and executable program. Slicing reduces
code size by computing a dependence graph and preserving only
the statements that are directly or transitively reachable from the
seed on the graph. Fine-grained static slicing is known to have
limitations due to imprecision of heap modeling and pointer han-
dling and thus does not work well for large-scale applications with
pointers, reflection, and dynamic class loading. Soto-Valero et al. in-
vestigated library dependency debloat in maven projects. Compared
with JShrink, their analysis is coarse-grained at the library depen-
dency level [55]. Therefore, their debloating technique can only
remove unused libraries, rather than unused code within a library.
Furthermore, their analysis is purely static and does not account
for dynamic features, which GitHub developers reported as an
important concern in their qualitative study.

The past two years have seen a proliferation of debloating tech-
niques [21, 27, 46, 47, 52, 67] designed for various domains, includ-
ing JavaScript programs [67], application containers (e.g., docker) [21],
or native C programs [46, 47]. These range from static analysis [21,
52] to load/runtime techniques [46] and machine learning [27].
However, none target modern Java, notoriously different from na-
tive programs in terms of memory management or dynamic method

invocation. This paper revisits and extends existing bytecode trans-
formation techniques, quantifies debloating potential, and checks
behavior preservation with real world tests.
Delta Debugging. Given a test oracle, delta-debugging based tech-
niques can repeatedly split the original program into different
sub-programs and re-check the test oracle to produce a debloated
program [31, 48, 59, 76]. For example, JReduce [31] partitions the
original program into transitive closures based on class-level depen-
dencies and isolates a debloated program that still passes the test.
Chisel [27] uses reinforcement learning to reduce the number of
search iterations during delta debugging. While these approaches
ensure behavior preservation of debloated software by repeatedly
running existing tests on each intermediate program, they suffer
from two limitations—(1) the resulting debloated software may not
retain any functionality beyond test-exercised code, simply reflect-
ing test coverage, and (2) the debloated software cannot be easily
configured to retain code statically reachable from public APIs or
main method entries, since designing such oracle would be exactly
the same task we undertook in JShrink.
Runtime Bloat. Researchers have proposed a range of dynamic
techniques that look for inefficiencies in data structure usage [44, 69,
70], object lifetime patterns [71], or reference copy chains [72, 75].
Such runtime bloat work is orthogonal to this work that removes
code bloat via static bytecode transformations.

8 CONCLUSION
Software debloating is a long standing problem. Some even con-
sider this problem to have been solved 20 years ago through static
reachability-analysis based code transformation. We therefore set
out to extend and rigorously evaluate software debloating transfor-
mations in the context of modern Java. Unlike previous research,
we handled dynamic language features, ensured type safety, and
took measures to pass the JVMs bytecode verification checks. We
found that prior work falls short of behavior preservation, meaning
debloated software no longer passes the same tests, with a test fail-
ure rate of up to 62.7%. Such lack of behavior preservation would
make it impossible to adopt debloating techniques in practice, as
no one would like to remove unused code at the cost of breaking a
majority of existing tests.

To the best of our knowledge, we are the first that systemati-
cally quantify size reduction, behavior preservation, and the benefit
of dynamic profiling in software debloating. Our results should
be transferable to a wide range of software such as mobile appli-
cations, which typically run on resource-constrained hardware.
Resource intensive cloud-based services may also benefit from soft-
ware optimized to occupy less space, or to be downloaded in a
smaller package, ergo consuming less bandwidth. To support the
open-science policy, we present our source code and a replication
package at https://doi.org/10.6084/m9.figshare.12435542.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. The partic-
ipants of this research are in part supported by ONR grant N00014-
18-1-2037; NSF grants CCF-1764077, CCF-1527923, CCF-1723773;
an Intel CAPA grant; a Samsung grant; and the Alexander von
Humboldt Foundation.

https://doi.org/10.6084/m9.figshare.12435542

JShrink: In-Depth Investigation into Debloating Modern Java Applications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES
[1] [n.d.]. Cobertura: A code coverage utility for Java. https://cobertura.github.io/

cobertura. Accessed: 2020-02-16.
[2] [n.d.]. Google BigQuery API and GitHub Dataset. https://cloud.google.com/

bigquery/public-data/. Accessed: 2020-04-04.
[3] [n.d.]. JVM TI APIs. https://docs.oracle.com/javase/8/docs/technotes/guides/

jvmti/. Accessed: 2020-04-04.
[4] [n.d.]. ONR BAA Announcement # N00014-17-S-B010. https://www.onr.

navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-
B010.ashx. Accessed: 2019-05-13.

[5] [n.d.]. ProGuard Bug #767: A misjudgement exception occurs while preverifying.
https://sourceforge.net/p/proguard/bugs/767. Accessed: 2020-04-04.

[6] [n.d.]. ProGuard: Java and Android Apps Optimizer. https://www.guardsquare.
com/en/products/proguard. Accessed: 2019-12-13.

[7] [n.d.]. Why The Java Deserialization Bug Is A Big Deal. Available from
www.darkreading.com. https://www.darkreading.com/informationweek-home/
why-the-java-deserialization-bug-is-a-big-deal/d/d-id/1323237

[8] [n.d.]. ysoserial: a proof-of-concept tool for generating payloads that exploit
unsafe Java object deserialization. https://github.com/frohoff/ysoserial. Accessed:
2019-05-10.

[9] David F Bacon and Peter F Sweeney. 1996. Fast static analysis of C++ virtual
function calls. ACM Sigplan Notices 31, 10 (1996), 324–341. https://doi.org/10.
1145/236338.236371

[10] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolenc, and Konsta
Karsisto. 2003. Survey of Code-size Reduction Methods. ACM Computer Survey
35, 3 (2003), 223–267. https://doi.org/10.1145/937503.937504

[11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.
Taming Reflection: Aiding Static Analysis in the Presence of Reflection and
Custom Class Loaders. In Proceedings of the 2011 International Conference on
Software Engineering — ICSE ’11. ACM, 241–250. https://doi.org/10.1145/1985793.
1985827

[12] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A code ma-
nipulation tool to implement adaptable systems. In Adaptable and extensible
component systems.

[13] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When
good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 2008 ACM conference on Computer and Communications
Security — CCS ’08. ACM, 27–38. https://doi.org/10.1145/1455770.1455776

[14] Jeffrey C. Carver, Natalia Juristo, Maria Teresa Baldassarre, and Sira Vegas. 2014.
Replications of Software Engineering Experiments. Empirical Softw. Engg. 19, 2
(April 2014), 267–276. https://doi.org/10.1007/s10664-013-9290-8

[15] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
system with lazy retrieval for Java projects. In Proceedings of the 2016 SIGSOFT
International Symposium on Foundations of Software Engineering — FSE ’16. ACM,
643–654. https://doi.org/10.1145/2950290.2950358

[16] Keith D. Cooper and Nathaniel McIntosh. 1999. Enhanced Code Compression for
Embedded RISC Processors. In Proceedings of the 1999 Conference on Programming
Language Design and Implementation — PLDI ’99. ACM, 139–149. https://doi.org/
10.1145/301631.301655

[17] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In Proceedings of the
1995 European Conference on Object-Oriented Programming — ECOOP ’95. https:
//doi.org/10.1007/3-540-49538-X_5

[18] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000. Com-
piler Techniques for Code Compaction. Transactions on Programming Languages
and Systems 22, 2 (2000), 378–415. https://doi.org/10.1145/349214.349233

[19] Jens Ernst, William Evans, Christopher W. Fraser, Todd A. Proebsting, and Steven
Lucco. 1997. Code Compression. In Proceedings of the 1997 Conference on Pro-
gramming Language Design and Implementation — PLDI ’97. ACM, 358–365.
https://doi.org/10.1145/258916.258947

[20] Robert Feldt, Tim Menzies, and Thomas Zimmermann. 2018. The 26th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2018), ROSE Festival
2018 Recognizing and Rewarding Open Science in Software Engineering.
https://2018.fseconference.org/track/rosefest-2018.

[21] Kostas Ferles, Valentin Wüstholz, Maria Christakis, and Isil Dillig. 2017. Failure-
directed Program Trimming. In Proceedings of the 2017 Symposium on the Founda-
tions of Software Engineering — FSE ’17. ACM, 174–185. https://doi.org/10.1145/
3106237.3106249

[22] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static Analy-
sis of Java Dynamic Proxies. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). ACM, New York, NY, USA, 209–220. https://doi.org/10.1145/3213846.
3213864

[23] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 2011 Conference on Foundations
of Software Engineering— FSE ’11. ACM, 416–419. https://doi.org/10.1145/2025113.
2025179

[24] Neal Glew and Jens Palsberg. 2002. Type-safe method inlining. In Proceedings of
the European Conference on Object-Oriented Programming — ECOOP ’02. Springer,
525–544. https://doi.org/10.1007/3-540-47993-7_22

[25] Neal Glew and Jens Palsberg. 2005. Method Inlining, Dynamic Class Loading,
and Type Soundness. Journal of Object Technology 4, 8 (2005), 33–53.

[26] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call graph
construction in object-oriented languages. ACM SIGPLAN Notices 32, 10 (1997),
108–124. https://doi.org/10.1145/263698.264352

[27] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). ACM, New York, NY, USA, 380–394. https://doi.org/10.1145/3243734.
3243838

[28] S. Horwitz, T. Reps, and D. Binkley. 1988. Interprocedural Slicing Using Depen-
dence Graphs. In Proceedings of the Conference on Programming Language Design
and Implementation — PLDI ’88. ACM, 35–46. https://doi.org/10.1145/77606.77608

[29] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and DinghaoWu. 2018. RedDroid:
Android application redundancy customization based on static analysis. In 2018
IEEE 29th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 189–199. https://doi.org/10.1109/ISSRE.2018.00029

[30] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program customization
and bloatware mitigation based on static analysis. In Proceedings of the 2016
Computer Software and Applications Conference — COMPSAC ’16. IEEE, 12–21.
https://doi.org/10.1109/COMPSAC.2016.146

[31] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary Reduction of Depen-
dency Graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Tallinn, Estonia) (ESEC/FSE 2019). ACM, New York, NY, USA, 556–
566. https://doi.org/10.1145/3338906.3338956

[32] Darko Kirovski, Johnson Kin, and William H. Mangione-Smith. 1997. Procedure
Based Program Compression. In Proceedings of the 1997 International Symposium
on Microarchitecture — Micro ’97. ACM, 204–213. https://doi.org/10.1023/A:
1018728216668

[33] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges
for Static Analysis of Java Reflection: Literature Review and Empirical Study. In
Proceedings of the 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 507–518. https:
//doi.org/10.1109/ICSE.2017.53

[34] Jason Landsborough, Stephen Harding, and Sunny Fugate. 2015. Removing the
kitchen sink from software. In Proceedings of the 2015 Genetic and Evolutionary
Computation Conference Companion — GECCO Companion ’15. ACM, 833–838.
https://doi.org/10.1145/2739482.2768424

[35] Charles Lefurgy, Eva Piccininni, and Trevor Mudge. 1999. Evaluation of a High
Performance Code Compression Method. In Proceedings of the 1999 International
Symposium on Microarchitecture — Micro ’99. 93–102. https://doi.org/10.1109/
MICRO.1999.809447

[36] Haris Lekatsas, Jörg Henkel, and Wayne Wolf. 2000. Code Compression for
Low Power Embedded System Design. In Proceedings of the 2000 Annual Design
Automation Conference — DAC ’00. 294–299. https://doi.org/10.1145/337292.
337423

[37] Ondrej Lhoták. 2002. Spark: A flexible points-to analysis framework for Java.
(2002).

[38] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing Reflection
Resolution for Java. In ECOOP 2014 – Object-Oriented Programming, Richard
Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 27–53. https://doi.
org/10.1007/978-3-662-44202-9_2

[39] Benjamin Livshits, Dimitrios Vardoulakis, Manu Sridharan, Yannis Smaragdakis,
OndÅŹej LhotÃąk, JosÃľ Amaral, Bor-Yuh Evan Chang, Samuel Guyer, Uday
Khedker, and Anders MÃÿller. 2015. In Defense of Soundiness: A Manifesto.
Commun. ACM 58 (01 2015), 44–46. https://doi.org/10.1145/2644805

[40] Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflection Analysis
for Java. In Proceedings of the Third Asian Conference on Programming Languages
and Systems (Tsukuba, Japan) (APLAS’05). Springer-Verlag, Berlin, Heidelberg,
139–160. https://doi.org/10.1007/11575467_11

[41] Konner Macias, Mihir Mathur, Bobby R. Bruce, Tianyi Zhang, and Miryung Kim.
2020. WebJShrink: A Web Service for Debloating Java Bytecode. In Proceedings
of the 28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering — ESEC/FSE ’20. ACM. https://doi.
org/10.1145/3368089.3417934

[42] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. 2010. Apache Maven.
Alpha Press.

[43] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. [n.d.]. Four Trends Leading
to Java Runtime Bloat. IEEE Software 27, 1 ([n. d.]), 56–63. https://doi.org/10.
1109/MS.2010.7

[44] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of
Health. Proceedings of the 2007 Conference on Object-Oriented Programming
Systems, Languages, and Applications — OOPSLA ’07 (2007), 245–260. https:
//doi.org/10.1145/1297027.1297046

https://cobertura.github.io/cobertura
https://cobertura.github.io/cobertura
https://cloud.google.com/bigquery/public-data/
https://cloud.google.com/bigquery/public-data/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://sourceforge.net/p/proguard/bugs/767
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://www.darkreading.com/informationweek-home/why-the-java-deserialization-bug-is-a-big-deal/d/d-id/1323237
https://www.darkreading.com/informationweek-home/why-the-java-deserialization-bug-is-a-big-deal/d/d-id/1323237
https://github.com/frohoff/ysoserial
https://doi.org/10.1145/236338.236371
https://doi.org/10.1145/236338.236371
https://doi.org/10.1145/937503.937504
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1145/2950290.2950358
https://doi.org/10.1145/301631.301655
https://doi.org/10.1145/301631.301655
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1145/349214.349233
https://doi.org/10.1145/258916.258947
https://doi.org/10.1145/3106237.3106249
https://doi.org/10.1145/3106237.3106249
https://doi.org/10.1145/3213846.3213864
https://doi.org/10.1145/3213846.3213864
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1007/3-540-47993-7_22
https://doi.org/10.1145/263698.264352
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/77606.77608
https://doi.org/10.1109/ISSRE.2018.00029
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1023/A:1018728216668
https://doi.org/10.1023/A:1018728216668
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1145/2739482.2768424
https://doi.org/10.1109/MICRO.1999.809447
https://doi.org/10.1109/MICRO.1999.809447
https://doi.org/10.1145/337292.337423
https://doi.org/10.1145/337292.337423
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1145/2644805
https://doi.org/10.1007/11575467_11
https://doi.org/10.1145/3368089.3417934
https://doi.org/10.1145/3368089.3417934
https://doi.org/10.1109/MS.2010.7
https://doi.org/10.1109/MS.2010.7
https://doi.org/10.1145/1297027.1297046
https://doi.org/10.1145/1297027.1297046

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim

[45] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. {RAZOR}: A Framework for Post-deployment Software
Debloating. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1733–
1750.

[46] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software through
piece-wise compilation and loading. In Proceedings of the 2018 USENIX Security
Symposium — USENIX Security ’18. 869–886.

[47] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings
of the 2017 Symposium on the Foundations of Software Engineering — FSE ’17. ACM,
476–486. https://doi.org/10.1145/3106237.3106271

[48] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN Notices,
Vol. 47. ACM, 335–346. https://doi.org/10.1145/2254064.2254104

[49] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding
Up Slicing. In Proceedings of the 1994 Symposium on Foundations of Software
Engineering — FSE ’94. ACM, 11–20. https://doi.org/10.1145/195274.195287

[50] IEEE Security and Privacy. 2019. A list of CS conferences with “SoK” tracks.
https://oaklandsok.github.io/others/.

[51] Marc Shapiro and Susan Horwitz. 1997. Fast and accurate flow-insensitive points-
to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1–14. https://doi.org/10.1145/263699.
263703

[52] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 2018 International Conference on Automated Software Engineering — ASE ’18.
ACM, 329–339. https://doi.org/10.1145/3238147.3238160

[53] Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Disser-
tation. Citeseer.

[54] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. 2015. More Sound Static Handling of Java Reflection. In APLAS. https:
//doi.org/10.1007/978-3-319-26529-2_26

[55] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2020.
A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem. arXiv
preprint arXiv:2001.07808 (2020).

[56] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin Slicing. In Pro-
ceedings of the Conference on Programming Language Design and Implementation
— PLDI ’07. ACM, 112–122. https://doi.org/10.1145/1250734.1250748

[57] Venkatesh Srinivasan and Thomas Reps. 2016. An Improved Algorithm for Slicing
Machine Code. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications — OOPSLA ’16. ACM, 378–393. https:
//doi.org/10.1145/3022671.2984003

[58] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. 2018. On
the Soundness of Call Graph Construction in the Presence of Dynamic Language
Features-A Benchmark and Tool Evaluation. InAsian Symposium on Programming
Languages and Systems. Springer, 69–88. https://doi.org/10.1007/978-3-030-
02768-1_4

[59] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering. ACM, 361–371. https://doi.org/10.1145/
3180155.3180236

[60] Frank Tip. 1994. A Survey of Program Slicing Techniques. Technical Report.
Amsterdam, The Netherlands, The Netherlands.

[61] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. 1999. Practical
Experience with an Application Extractor for Java. In Proceedings of the 1999
Conference on Object-oriented Programming, Systems, Languages, and Applications

— OOPSLA ’99. ACM, 292–305. https://doi.org/10.1145/320384.320414
[62] Frank Tip, Peter F Sweeney, Chris Laffra, Aldo Eisma, and David Streeter. 2002.

Practical extraction techniques for Java. ACM Transactions on Programming
Languages and Systems — TOPLAS ’02 24, 6 (2002), 625–666. https://doi.org/10.
1145/586088.586090

[63] Mohsen Vakilian, Raluca Sauciuc, J David Morgenthaler, and Vahab Mirrokni.
2015. Automated decomposition of build targets. In Proceedings of the 2015
International Conference on Software Engineering — ICSE ’15. IEEE Press, 123–133.
https://doi.org/10.1109/ICSE.2015.34

[64] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot — A Java Bytecode Optimization Framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collabora-
tive Research — CASCON ’99. IBM Press, 13–23. https://doi.org/10.1145/1925805.
1925818

[65] R. van deWiel, L. Augusteijn, A. Bink, and P. Hoogendijk. 2001. Code compaction:
Reducing memory cost of embedded software. Philips White Paper.

[66] R. van de Wiel and P. Hoogendijk. 2001. Belt-tightening in software. Philips Res.
Passw. Mag.. , 16–19 pages.

[67] H.C. Vazquez, A. Bergel, S. Vidal, J.A. Diaz Pace, and C. Marcos. 2019. Slim-
ming Javascript applications: An approach for removing unused functions from
Javascript libraries. Information and Software Technology 107 (2019), 18–29.
https://doi.org/10.1016/j.infsof.2018.10.009

[68] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A verifiable
approach to partially-virtualized binary code simplification. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security. ACM,
442–458. https://doi.org/10.1145/3243734.3243827

[69] Guoqing Xu. 2012. Finding Reusable Data Structures. In Proceedings of the 2012
Conference on Object-Oriented Programming Systems, Languages, and Applications
— OOPSLA ’12. ACM, 1017–1034. https://doi.org/10.1145/2398857.2384690

[70] Guoqing Xu. 2013. CoCo: Sound and Adaptive Replacement of Java Collections.
In Proceedings of the 2013 European Conference on Object-Oriented Programming
— ECOOP ’13. Springer, 1–26. https://doi.org/10.1007/978-3-642-39038-8_1

[71] Guoqing Xu. 2013. Resurrector: A Tunable Object Lifetime Profiling Technique
for Optimizing Real-world Programs. In Proceedings of the 2013 Conference on
Object Oriented Programming Systems Languages and Applications — OOPSLA ’13.
ACM, 111–130. https://doi.org/10.1145/2509136.2509512

[72] Guoqing Xu, Matthew Arnold, Nick Mitchell, and Atanas Rountev añd Gary Sevit-
sky. 2009. Go with the flow: Profiling copies to find runtime bloat. In Proceedings
of the 2009 Conference on Programming Language Design and Implementation —
PLDI ’09. ACM, 419–430. https://doi.org/10.1145/1542476.1542523

[73] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, Edith Schonberg,
and Gary S evitsky. 2010. Finding Low-Utility Data Structures. In Proceedings
of the 2010 Conference on Programming Language Design and Implementation —
PLDI ’10. ACM, 174–186. https://doi.org/10.1145/1806596.1806617

[74] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky.
2010. Software bloat analysis: finding, removing, and preventing performance
problems in modern large-scale object-oriented applications. In Proceedings of
the 2010 workshop on Future of Software Engineering Research — FoSER ’10. ACM,
421–426. https://doi.org/10.1145/1882362.1882448

[75] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2012. Uncovering Performance
Problems in Java Applications with Reference Propagation Profiling. In Proceed-
ings of the International Conference on Software Engineering — ICSE ’12. IEEE,
134–144. https://doi.org/10.1109/ICSE.2012.6227199

[76] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/195274.195287
https://doi.org/10.1145/263699.263703
https://doi.org/10.1145/263699.263703
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/3022671.2984003
https://doi.org/10.1145/3022671.2984003
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/320384.320414
https://doi.org/10.1145/586088.586090
https://doi.org/10.1145/586088.586090
https://doi.org/10.1109/ICSE.2015.34
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1016/j.infsof.2018.10.009
https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1145/2398857.2384690
https://doi.org/10.1007/978-3-642-39038-8_1
https://doi.org/10.1145/2509136.2509512
https://doi.org/10.1145/1542476.1542523
https://doi.org/10.1145/1806596.1806617
https://doi.org/10.1145/1882362.1882448
https://doi.org/10.1109/ICSE.2012.6227199
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 Background
	3 JShrink
	3.1 Profile Augmented Static Analysis
	3.2 Bytecode Debloating Transformations
	3.3 Implementation and Nuanced Extensions

	4 Benchmark
	5 Experiments
	5.1 Experiment Setup and Baselines
	5.2 RQ1: Code Size Reduction
	5.3 RQ2: Semantic Preservation
	5.4 RQ3: Trade-offs
	5.5 RQ4: Robustness

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

