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Abstract—Developers often inspect a diff patch during peer
code reviews. Diff patches show low-level program differences
per file without summarizing systematic changes—similar, related
changes to multiple contexts. We present CRITICS, an interactive
approach for inspecting systematic changes. When a developer
specifies code change within a diff patch, CRITICS allows de-
velopers to customize the change template by iteratively gener-
alizing change content and context. By matching a generalized
template against the codebase, it summarizes similar changes
and detects potential mistakes. We evaluated CRITICS using two
methods. First, we conducted a user study at Salesforce.com,
where professional engineers used CRITICS to investigate diff
patches authored by their own team. After using CRITICS, all
six participants indicated that they would like CRITICS to be
integrated into their current code review environment. This also
attests to the fact that CRITICS scales to an industry-scale project
and can be easily adopted by professional engineers. Second, we
conducted a user study where twelve participants reviewed diff
patches using CRITICS and Eclipse diff. The results show that
human subjects using CRITICS answer questions about systematic
changes 47.3% more correctly with 31.9% saving in time during
code review tasks, in comparison to the baseline use of Eclipse
diff. These results show that CRITICS should improve developer
productivity in inspecting systematic changes during peer code
reviews.

I. INTRODUCTION

Code reviews are one of the most important quality as-
surance activities in software development [1]–[4]. According
to a recent study, developers spend a significant amount of
time and effort to comprehend code changes during peer code
reviews [5].

When the information required to inspect code changes is
distributed across multiple files, developers find it difficult to
inspect a diff patch [6]. Suppose that an API gets modified in
the latest release. All call sites using this API must be updated
correctly [7]. Such edits tend to be systematic—involving
similar but not identical edits to multiple locations. As another
example, when programmers make changes to non-functional
requirements such as security and persistence, these changes
tend to be crosscutting edits to multiple locations [8].

Popular code review tools—PHABRICATOR,1 GERRIT,2 COL-
LABORATOR,3 and CODEFLOW,4—all compute differences per
file. This obliges the programmer to read changed lines file

1http://phabricator.org
2http://code.google.com/p/gerrit/
3http://smartbear.com/products/software-development/code-review/
4http://visualstudioextensions.vlasovstudio.com/2012/01/06/codeflow-code-

review-tool-for-visual-studio/

by file, even when those cross-file changes are done system-
atically with respect to the program’s structure. Therefore,
programmers are left to manually inspect individual edits
to answer questions such as “what other code locations are
changed similar to this change?” and “are there any other
locations that are similar to this code but are not updated?”

Clone detection, code search, and matching approaches [9]–
[12] can locate similar code fragments, but they do not directly
work with diff patches. They do not summarize similar edits
nor report change anomalies in a diff patch. These approaches
also do not empower users to interactively investigate system-
atic changes, as they do not give users the control to itera-
tively generalize the search template. LSdiff [13] automatically
summarizes coarse-grained structural differences, but naively
enumerates all possible systematic change patterns as rules.
This leads to the issue of poor scalability and a high rate
of false positives. In Section VI, we discuss related work in
detail.

This paper presents CRITICS, a new approach for interac-
tively inspecting systematic changes during peer code reviews.
Given a specified change, CRITICS creates a context-aware
change template, extracting the surrounding control and data
flow context. This approach models the template as Abstract
Syntax Tree (AST) edits and allows reviewers to iteratively
customize the template by parameterizing its content or by
excluding certain statements. It then matches the customized
template against the codebase to summarize systematic edits
and locate potential inconsistent or missing edits. Our user
study participants report that this interactive feature allows re-
viewers with little knowledge of a codebase to flexibly explore
the diff patch with a desired pattern. They can incrementally
refine the template and progressively search for systematic
changes.

To demonstrate the benefits of our approach, we conducted
two studies. First, professional software engineers at Sales-
force.com used CRITICS to investigate diff patches authored
by their own team. After they finished a hands-on trial of
using CRITICS, we conducted semi-structured interviews with
individual participants to understand the current challenges
that they face during code reviews and whether and how
CRITICS could help. The interviews helped us gather insights
about the usability and benefit of CRITICS in an industry
setting. All six participants said that they would like to have
CRITICS integrated into their current code review environment,
COLLABORATOR. CRITICS’s feature to detect missing or incon-
sistent edits was valuable to their team and its interactive



usage was appropriate for novice developers to learn about
the codebase.

In our second study, twelve participants reviewed diff
patches using both CRITICS and Eclipse diff. This controlled
experiment found that human subjects answered questions
about systematic changes 47.3% more correctly and 31.9%
faster on average with the assistance of CRITICS, in comparison
to the baseline use of Eclipse diff. In addition to these two
studies, we also compared the accuracy of CRITICS with our
prior work LASE. The comparison found that in five out of
six cases, interactively customizing a change template using
CRITICS could achieve the same or even higher accuracy than
LASE within a few iterations, showing the benefit of interactive
template generation, as opposed to fixed template generation.
In summary, our paper makes the following contributions.
• A new approach for interactively inspecting diff out-

puts. CRITICS provides a novel integration of program
differencing and interactive code pattern search to locate
and examine systematic changes. It is instantiated as
an Eclipse plug-in and the tool is available online. Our
replication package also includes tutorial materials, study
tasks, and survey questions used for a lab study.5

• A user study with six professional software engineers
at Salesforce.com. After using CRITICS to investigate the
patches authored by their own team, the participants re-
ported that CRITICS is helpful for inspecting system-wide
changes and noticing oversight errors. All participants
said they would like CRITICS to be integrated into their
current code review environment. The study also shows
that CRITICS is a mature tool that scales to an industry
project and can be easily used by professional engineers.

• A lab study with twelve students at the University of
Texas. Students answered questions about systematic
changes more correctly and quickly using CRITICS than
using Eclipse diff.

The rest of this paper is organized as follows. Section II il-
lustrates our approach using a motivating example. Section III
describes how CRITICS models code change as context-aware
AST edits using static program analysis and how it matches
a generalized change template using an adapted robust tree
edit distance algorithm. Section IV-A describes a study with
software engineers at Salesforce.com. Section IV-B describes
our controlled experiment where participants complete code
review tasks with and without CRITICS. Section V discusses
the comparison between CRITICS and our prior work LASE and
threats to validity. Section VI describes related work.

II. MOTIVATING SCENARIO

This section overviews CRITICS with a real world example
drawn from Eclipse Standard Widget Toolkit (SWT) project.
SWT is an open source widget toolkit with 400K lines of
source code over 1000 files. This example is based on a diff
patch at revision 13516, as shown in Figure 1. The patch is
adapted and simplified for presentation purposes.

5https://sites.google.com/a/utexas.edu/critics/

Suppose Alice updates the program to use the new
sendEvent API. Barry needs to review Alice’s changes to
ensure all locations using sendEvent are updated correctly
and to check if there is any location that Alice forgot to change.
The diff patch authored by Alice is over 450 lines of changes
distributed across 42 different locations.

In order to find incorrect edits, Barry needs to inspect line
level differences file by file. In particular, to identify missing
updates, he must also inspect unchanged code as well, since
the original diff patch does not show what did not change.
The following shows how Barry may iteratively use CRITICS

to inspect systematic changes and to detect potential missing
or inconsistent updates.
Iteration 1. Suppose Barry first inspects changes in the
keyDownEvent method in Figure 1(a). He wonders whether
there are other methods that are changed similarly to
keyDownEvent. So he selects the changed code in the diff
patch. Given the selected change, CRITICS identifies the change
context—unchanged, surrounding code relevant to these edits
in terms of control and data dependences, which further serves
as an anchor to locate missing updates during the searching
process. So the default template generated by CRITICS consists
of both the initial edit selection and the change context. Using
the template, CRITICS locates code that matches the change
context but is missing the update, shown in Figure 1(b).
Iteration 2. After examining the search result in the first
iteration, Barry wants to explore further since he suspects other
locations may use different identifier names. To match similar
but not identical changes, CRITICS allows Barry to generalize
the change template by parameterizing type, variable, and
method names. So Barry generalizes the variable name event
and searches again. This time, the location in Figure 1(c) is
summarized although it uses a different variable name, ev.
Iteration 3. CRITICS includes the change context such as
the switch and case statements from lines 3 to 5 in
Figure 1(a) in the current template. Barry wonders if there
are similar changes in different control-flow contexts such as
a for loop or an if-else branch. He excludes the switch
statement. Using the new refined template, CRITICS locates
buttonUpEvent in Figure 1(d). This location uses an if
statement instead of a switch statement. However, CRITICS

flags this location as a potential inconsistent change, since
Alice mistakenly swapped the two expressions, EXPAND and
COLLAPSE. Such mistake is usually hard for the reviewer to
detect during code inspection.

III. APPROACH

CRITICS provides a novel integration of program differenc-
ing and pattern-based interactive code search to help devel-
opers note inconsistent or missing changes during peer code
reviews. It consists of the following three phases. Phase I
takes a user specified change region and extracts the relevant
context. Phase II allows developers to customize the change
template by interactively generalizing its content. Phase III
matches a template against the codebase to summarize similar
changes and to detect potential anomalies. The reviewer can



1 int keyDownEvent (int wParam, int lParam) {
2 - ExpandItem item = items [focusIndex];
3 switch (wParam) {
4 case OS.VK_SPACE:
5 case OS.VK_RETURN:
6 Event event = new Event ();
7 - event.item = item;
8 - sendEvent(true, event);
9 + event.item = focusItem;

10 + sendEvent(focusItem.expanded ? COLLAPSE:EXPAND,
event);

11 + refreshItem(focusItem);
12 ...
13 }

(a) A changed region selected by Barry

1 int keyPressedEvent (int wParam, int lParam) {
2 ExpandItem item = items [focusIndex];
3 switch (wParam) {
4 case OS.VK_SPACE:
5 case OS.VK_RETURN:
6 Event event = new Event ();
7 event.item = item;
8 sendEvent(true, event);
9 ...

10 }

(b) Code location with exactly the same context but missing the update

1 int keyReleaseEvent (int wParam, int lParam) {
2 - ExpandItem item = items [focusIndex];
3 switch (wParam) {
4 case OS.GDK_RETURN:
5 case OS.GDK_SPACE:
6 Event ev = new Event ();
7 - ev.item = item;
8 - sendEvent(true, ev);
9 + ev.item = focusItem;

10 + sendEvent(focusItem.expanded ? COLLAPSE:EXPAND, ev);
11 + refreshItem(focusItem);
12 ...
13 }

(c) A similar but not identical change using a different variable name, ev, instead of

event

1 int buttonUpEvent (int wParam, int lParam) {
2 - ExpandItem item = items [focusIndex];
3 if (lParam == HOVER) {
4 Event bEvent = new Event ();
5 - bEvent.item = item;
6 - sendEvent(true, bEvent);
7 + bEvent.item = focusItem;
8 + sendEvent(focusItem.expanded ? EXPAND:COLLAPSE,

bEvent);
9 + refreshItem(focusItem);

10 ...
11 }

(d) Inconsistent change by mistakenly swapping two expressions, EXPAND and COLLAPSE

Fig. 1: Simplified examples of systematic changes, inconsistent changes, and missing updates. Code deletions are marked with
‘-’ and additions are marked with ‘+’.

investigate the diff patch and achieve the desired result by it-
eratively refining the change template (Phase II) and searching
change locations (Phase III).

A. Context Extraction

CRITICS parses the selected changed fragments into Ab-
stract Syntax Tree (AST) edits and extracts the change con-
text—surrounding unchanged code on which the selected edits
are control and data dependent by performing static intra
procedural slicing [14]. It selects all upstream dependent AST
nodes based on a transitive relation within a method. The
context could indicate where edits should be applied and serve
as an anchor to locate systematic edits and to identify potential
mistakes.

• Data dependence: AST node nj is data dependent on
node ni, if node nj uses a variable whose value is
defined in node ni. For example, by analyzing data
dependencies between edits and surrounding unchanged
code, CRITICS includes a variable declaration at line 6,
whose variable event is referenced from the deleted line
7 in Figure 1(a).

• Control dependence: AST node nj is control dependent
on node ni, if node nj may or may not execute depending
on a decision made by node ni. For example, the switch
and case statements from lines 3 to 5 in Figure 1(a) are
included since the execution of the changed code depends
on these control predicates.

B. Change Template Customization

CRITICS creates a default change template, including the
initial selected fragments and the change context. A reviewer
can customize the template by generalizing its content and to
iteratively refine the template.
Parameterizing Identifiers. CRITICS allows a developer to
parameterize type, variable, and method names, so that they
can be regarded as equivalent to different identifiers during the
matching process. Suppose that there is a statement char[]
data = foo() in the change template. By parameterizing
the variable name, data, CRITICS automatically propagates
the parameterization to all statements referencing data and
this statement can be matched to any other statements in the
form of char[] $V1 = foo() where $V1 represents any
variable name.
Excluding Statements. CRITICS allows a user to exclude cer-
tain statements in the change template. Specially, by excluding
contextual statements, CRITICS is able to find similar changes
in multiple contexts. An excluded statement is mapped to a
parameter $EXCLUDED in a generalized change template. For
example, by converting switch(x) to $EXCLUDED, it can
match if(x == 1114) in line 3 in Figure 1(d).

C. Matching and Anomaly Detection

Given a customized change template, CRITICS searches and
summarizes systematic changes.
Tree Matching. To compute the similarity between different
locations, CRITICS parses methods to abstract syntax trees and
searches for similar subtrees by matching the template against



other methods in the codebase. CRITICS extracts a query tree
from an abstract diff template. This query tree is then matched
against a target tree of the rest of the codebase. CRITICS

applies an efficient and worst-case optimal tree matching
algorithm, Robust Tree Edit Distance (RTED) [15], which
combines the strengths of Zhang’s algorithm [16] and De-
maine’s algorithm [17]. Zhang’s algorithm is efficient for trees
with O(log n) depth but has the worst-case time complexity
O(n4). Demaine’s algorithm has a better worst-case time
complexity O(n3) but runs into the worst case frequently.
RTED recursively decomposes the input trees into sub-forests,
either removing the leftmost or the rightmost root node. It then
computes the tree edit distance recursively by finding structural
alignment. RTED then provides a list of matching node pairs
with node edit operations that transform one tree into another.

The original RTED algorithm finds node-level alignment by
calculating the minimum edit distance, producing many false
positives. Therefore, CRITICS further computes token-level
alignment between two matching AST nodes, as described
in procedure TokenMatch in Algorithm 1. Given a list of
token level matches, CRITICS checks whether a parameterized
name is mapped to a concrete name. If the token labels are
exactly the same, CRITICS considers them to be equivalent.
While matching labels, we match the parameterized names
such as $V1 in the query tree with any concrete name in
the target tree to support flexible matching. Suppose that
RTED aligns two nodes: “$T $V = $M(y)” and “int x
= foo(y).” CRITICS produces token level alignment: {(“$T”,
‘int”), (“$V”, “x”), (“$M(y)”, “foo(y)”)}. Because these
token level mappings are allowed via explicit parameterization
in the previous step, CRITICS considers the aligned two nodes
as identical and continues to check the next aligned pair.

As another adaptation to RTED, CRITICS checks whether
there is an excluded node in the list of the aligned nodes
computed by RTED. If RTED aligns an $EXCLUDED node
with another node, CRITICS allows such matching, as described
in line 11 in Algorithm 1. Suppose that CRITICS takes a node
pair switch(x) in a query tree and if(x == y) in a target
tree. If the node switch(x) is excluded by a user, CRITICS

matches the two nodes. Figure 2 shows an example of node
level and token level alignment.

CRITICS improves the performance of search by caching
relevant data to reduce search load. CRITICS maps an identifier
name to a set of source files using the identifier name and
stores the mappings in a hash table. Before running RTED,
CRITICS inspects each identifier name in a query tree and
identifies a set of files using the same set of identifier names
by looking up the hash table. Then, it only scans through the
searched source files to avoid unnecessary matching.
Change Summarization and Anomaly Detection. Each tem-
plate consists of a before state and an after state. The before
state refers to code before edits. Conversely, the after state
refers to the code after edits. Using the tree matching algo-
rithm, CRITICS finds two sets of similar subtrees, matching
the old and the new version respectively. If a method matches
the before state, but not the after state, it implies that the

N1: m1(int x, int y) 

N4: if(x == 1114) 
$EXCLUDED 

N5: char[] buf = foo() 
$T1 $V1 = $M1() 

N6: String c = baz(buf, b) 
String c = baz($V1, b) 

N2: int a = y N3: int b = 0 

(a) A query tree.

M1: m2(int x, int y) 

M4: switch(x) 

M5: case 1114 

M6: byte[] buffer = bar() M7: String c = baz(buffer, b) 

M2: int a = y M3: int b = 0 

(b) A target tree matched with the above query tree.

Fig. 2: RTED matches nodes, such as (N1, M1), (N2, M2), (N3, M3), (N4,

M4), (N5, M6), and (N6, M7), and CCRITICS matches tokens in the labels
of two matched nodes N5 and M6, such as (“$T1”, “byte[]”), (“$V1”,

“buffer”), and (“$M2”, “bar”).

programmer either made an incorrect edit or forgot to update
the code. Similarly, if a method matches the after state but
not the before state, CRITICS reports it as an anomaly as well,
because similar edits are made to different contexts. We report
two types of change anomalies: (1) inconsistent changes,
where edits are applied but partially incorrect and (2) missing
updates, where the required edits are completely missing. This
feature of detecting change anomalies distinguishes CRITICS

from other pattern mining and anomaly detection approaches
that work with a single program version as opposed to a diff
patch.

To summarize the matching systematic changes, CRITICS

shows the individual matching locations and summarizes the
similar edits using a change template derived from matching
locations. Our implementation leverages ChangeDistiller [18]
to compute AST edits, Crystal6 for data and control flow
program analysis, and RTED [15] for computing tree edit
distance.

IV. EVALUATION

We evaluated CRITICS using two different methods. First,
we conducted a user study with professional software en-
gineers to understand how CRITICS can help them during
code reviews. Engineers at Salesforce.com used CRITICS to
investigate the real patches found in their version history,
authored by their own team. This study emulates the realistic
code review scenarios and solicits authentic feedback on the

6https://code.google.com/p/crystalsaf/



Algorithm 1: Searching similar subtrees.
Input : Let AST be an Abstract Syntax Tree for a program.
Input : Let QT be a query tree from a customized change template.
Output: Let MTs be a collection of the matched subtrees.

Algorithm searchSimilarSubtrees(QT)
1 MTs := ∅;
2 foreach nodei from AST do
3 t := getSubtree(nodei);

/* t is a target tree */
4 if RTED.match(QT, t) ≡ TRUE then
5 nodePairs := ∅;
6 nodePairs := nodePairs ∪ {(ni, mi) — ni ∈ QT,

mi ∈ t, where (ni, mi) is a pair of nodes that
RTED matches and aligns.};

7 if tokenMatch(nodePairs) ≡ TRUE then
8 MTs := MTs ∪ {t};

end
end

end
9 return MTs;

Procedure tokenMatch(nodePairs)
10 foreach pairi ∈ nodePairs do
11 if pairi.n is excluded then
12 continue;

end
13 if match(pairi.n.label, pairi.m.label) ≡ FALSE then

/* pairi.n.label is different from pairi.m.label. */
14 tokenPairs := ∅;
15 tokenPairs := tokenPairs ∪ {(tj , uj ) —

tj ∈ pairi.n.label, uj ∈ pairi.m.label, where
(tj , uj ) is a pair of a deleted token and an ins-
erted token that CRITICS matches and aligns.};

16 if ∀tj ∈ tokenPairs, tj is parameterized then
17 continue;

end
else

18 return FALSE;
end

end
end

19 return TRUE;

use of CRITICS in the real world. Second, we conducted a
lab study at the University of Texas at Austin, where twelve
participants investigated diff patches using both CRITICS and
Eclipse diff and search. We selected Eclipse diff and search
as a baseline, because they are default features in Eclipse. We
cannot use existing clone-based search tools as a baseline,
because they are not designed for inspecting diff patches
and thus participants cannot use them without adapting the
tools to inspect diff patches. These two evaluation methods
(hands-on trials followed by semi-structured interviews and a
controlled experiment using human subjects) complement each
other by assessing the benefits of CRITICS both qualitatively
and quantitatively.

A. User Study with Professional Developers at Salesforce

We recruited six participants from Salesforce.com. The
participants included two software developers, three quality
engineers, and a project manager from the same team. This
team develops a platform for other teams to process and
manage big data stored in the cloud. The participant names
and the product name are anonymized.

All six participants had at least three years of Java develop-
ment experience in industry. Five reported that they conduct
code reviews at least weekly, using COLLABORATOR, a default

code review tool at Salesforce.7 Although one manager said
he seldom reviews others’ changes, we still interviewed him,
because he could provide valuable feedback from a manager’s
perspective. Table I shows the demographic information about
the six participants.

In terms of a study procedure, we first gave a presentation to
introduce CRITICS’s features to the participants. This presenta-
tion included a twenty-minute live demo of how to use CRITICS

Eclipse plug-in. To get accurate and comprehensive feedback,
participants were then asked to use CRITICS to investigate
one of the four diff patches authored by their colleagues. This
could simulate hands-on experience of using CRITICS in a real
world setting, because the participants reviewed patches from
their own system.

The four patches came directly from the version history
of the Salesforce codebase that they currently work on. We
selected the patches that include similar changes to multiple
files, because the goal of CRITICS is to help developers examine
systematic changes and find potential anomalies. Table II
describes the associated commit log descriptions, the size
of the patches in terms of changed lines of code, and the
number of changed files from the actual version history. While
we do not disclose the size of the Salesforce codebase for
confidentiality, we report that CRITICS is a mature tool that
scales to an industrial-scale project and the participants did
not have any problems running CRITICS on their codebase and
patches.

For individual participants, the hands-on use of CRITICS

lasted about 20 to 30 minutes. Afterward, we conducted
a semi-structured interview to solicit their feedback on the
utility of CRITICS. The advantage of semi-structured interviews
is that they are flexible enough to allow unforeseen types
of information to be recorded [19]. The interviews were
audio-recorded and transcribed later for further analysis. The
interview questions are described below.
• What kind of challenges do you face when you conduct

code reviews?
• In which situation, do you think CRITICS can help im-

prove code reviews in your team?
• Would you like to have CRITICS be integrated with the

code review tool you are currently using?
• How do you like or dislike CRITICS?

Subject Role Gender Age Java
Experience

Code Review
Frequency

1 Developers Male 21-30 4 Weekly

2 Quality
Engineer Female 21-30 3 Weekly

3 Manager Male 41-50 4 Seldom

4 Quality
Engineer Male 21-30 5 Weekly

5 Quality
Engineer Female 31-40 10 Weekly

6 Developers Male 41-50 14 Daily

TABLE I: The demographic information of study participants

7http://smartbear.com/products/software-development/code-review/



No Commit Description Changed
LOC

Num of
Changed Files

1 Refactor test cases by moving
bean maps to respective utils classes 743 22

2
Refactoring the API to get versioned
field values by passing the
version context as a parameter

943 34

3

Refactor tests by using try-with-
resources statements to ensure the
resource object is released after
the program

484 10

4 Update common search tests by
getting versioned test data 2224 12

TABLE II: Diff patches from Salesforce.com used for the
study

The interview results are organized by the questions raised
during the interviews.
What kind of challenges do you face when you conduct
peer code review? COLLABORATOR allows developers to
upload, compare, and comment patches during code re-
views. However, participants find it hard to review systematic
changes, since COLLABORATOR only highlights differences on
the uploaded patches, lacking the ability to identify underlying
similar change patterns and pinpoint overlooked mistakes.

“Since REST APIs across different versions generally share
similar code snippets, refactoring on versioned APIs often
involves similar changes. Unfortunately, these changes are
not always exactly the same, including subtle differences in
different locations.”

“It is hard for us to find missing updates, especially if
the reviewer is not familiar with the codebase. So we totally
depend on regression testing to check if there is any location
we forgot to change, assuming it (the overlooked change) will
break test cases. But, honestly, it does not work very well.”
In which situations do you think CRITICS can help improve
code reviews in your team? The participants mentioned that
CRITICS can help them inspect system-wide changes, so that
they do not need to manually walk through each changed
location line by line. They also discussed that code reviews are
usually assigned to senior developers and consequently piled
up on them, since they are familiar with the codebase and are
more likely to notice oversight errors. They believed that the
interactive search process of CRITICS is an efficient method
for novices to perform code reviews, unleashing the burdens
of senior developers and spreading knowledge between team
members.

“Because currently in our company, reviewers only ensure
the logic correctness and coding style in uploaded patches.
They barely check if there is any missing update, unless
a reviewer is very familiar with the codebase and knows
where the developer should update. That is also why we
always assign code reviews to senior developers in the scrum
team. The feature in your tool can free us from piling code
review tasks on our senior developers, since it can do the
inspection automatically without requiring deep knowledge of
the codebase.”

“CRITICS would be helpful to check some API updates in

our projects. For example, an API from one team is updated
and the old API is deprecated. Since people only change the
locations they know and reviewers usually do not intentionally
check unchanged areas, we cannot guarantee all locations are
updated as expected. So using CRITICS could help us find out
all the locations that need to be updated in the early stage
so that we do not need to wait for regression testing or even
worse, the customer to tell us if there is any place that we
updated incorrectly or forgot to update.”
Would you like to have CRITICS be integrated with your
current code review tool? All six participants provided strong
positive answers and believed that it would be useful to have
CRITICS integrated to their code review tool, COLLABORATOR.

“Definitely. It makes sense to integrate it with COLLABORA-
TOR, since it will save a lot of time for code review.”

“Of course. Currently COLLABORATOR only highlights the
changed location in a very naive way. A feature like extracting
and visualizing the change context can help us better under-
stand the change itself as well as find some underlying change
patterns between related changes.”
How do you like or dislike CRITICS? They thought CRITICS

would be a good time saving tool for code reviews. Four
participants replied that they like the search feature a lot
because of its flexibility and interactivity compared with
existing textual search. Two participants shared the UI is not
very intuitive at a first glance and it took some time for them
to grasp the UI.

“I like it since it is a great time saving tool for code review
and I think its ability to find similar changes can be useful in
our work.”

“It will be more interesting if you can provide the change
skeleton by default in the tree graph and enable users to
expand a node to see details if they want to.”

In summary, after using CRITICS to investigate their own
team’s patches, participants told us that CRITICS can improve
developer productivity in code reviews and should be inte-
grated to COLLABORATOR. Professional engineers encounter
challenges when reviewing system-wide code changes. Cur-
rently, in their work environment, they barely have any reliable
mechanism to guarantee all locations are correctly modified.
Participants think CRITICS would help them detect unnoticed
locations. Its interactive search feature also makes it easier for
less experienced developers to use the tool. All participants
strongly affirmed that they would like to have CRITICS’s
features as a part of their current code review environment.

B. Lab Study: Comparison with Eclipse Diff and Search

We conducted a user study with 12 participants to further
evaluate the efficiency and usability of CRITICS.

• RQ1: How accurately does a reviewer locate similar
changes with CRITICS in comparison to Eclipse diff and
search?

• RQ2: How correctly can a reviewer detect change anoma-
lies with CRITICS in comparison to Eclipse diff and
search?



Versions Change Description Similar Change Inconsistent Change Missing Update Size(LOC)

Patch1
(Simple)

JDT 9800
vs.

JDT 9801

initiate a variable in a for loop
instead of using a hashmap

getTrailingComments(ASTNode)
getLeadingComments(ASTNode)
getExtendedEnd(ASTNode)

getExtendedStartPosition(ASTNode) getComments(ASTNode)
getCommentsRange(ASTNode) 190

Q1. Given the change in the method getTrailingComments, what other methods containing similar changes can you find? Count the number.
A. 0 B. 1 C. 2 D. 3 or more
Answer: C. getLeadingComments and getExtendedEnd.

Q2. Which of the following methods contains inconsistent changes compared with the change in getTrailingComments?
A. storeTrailingComments B. getExtendedEnd C. getLeadingComments D. getExtendedStartPosition
Answer: It uses a wrong expression, i<=this.leadingPtr instead of range==null && i<=this.trailingPtr.

Q3. How many methods share context similar to the change in getTrailingComment but missed the similar update?
A. 0 B. 1 C. 2 D. 3 or more
Answer: C. getComments and getCommentsRange.

Versions Change Description Similar Change Inconsistent Change Missing Update Size(LOC)

Patch2
(Complex)

JDT 10610
vs.

JDT 10611

extract the logic of unicode
traitement to a method

getNextChar()
getNextCharAsDigit()
getNextToken()
...
9 locations in total

getNextCharAsJavaIdentiferPart()

jumpOverMethodBody()
getNextChar(char, char)
getNextToken()
... 11 locations in total,
all located in another file

680

Q1. Given the change in the method getNextChar, what other methods containing similar changes can you find?
A. 0 B. 1-5 C. 6-9 D. 10 or more
Answer: C. getNextCharAsDigit() and getNextToken(), ... 8 methods in total

Q2. Which of the following methods contains inconsistent change compared with the change in getNextChar?
A. getNextCharAsDigit B. getNextCharAsJavaIdentiferPart C. jumOverMethodBody D. jumpOverUnicodeWhiteSpace
Answer: It invokes a wrong method, jumpOverMethodBody instead of getNextUnicodeChar.

Q3. How many methods share context similar to the change in getNextChar but missed the similar update?
A. 0 B. 1-5 C. 6-9 D. 10 or more
Answer: D.jumpOverMethodBody, getNextToken ... 11 methods in total.

TABLE III: The description of two patches and corresponding questions for code review tasks.

• RQ3: How much time can a reviewer save in a code
review task when using CRITICS?

In this study, we used counterbalancing to control the order
effect. Each participant carried out two different code review
tasks, Patch 1 and Patch 2, once using CRITICS and once
with Eclipse diff and search. In this section, we refer to the
setting of Eclipse without CRITICS as diff in short. Patch 1 is a
simple patch with 190 changed lines, and Patch 2 is a complex
patch with 680 changed lines. Both the order of the assigned
tools and the order of the assigned tasks were randomized to
mitigate the learning effect. Table III describes the patches in
terms of data source, patch size (LOC), change description as
well as the number of methods that contain similar changes,
inconsistent changes, and missing updates. It also describes
the user study questions for each patch.

Four of the twelve participants were electrical and computer
engineering undergraduate students and the other eight were
all graduate students in software engineering. All participants
had at least one year experience in using the Eclipse IDE.
All but one participant had code review experience with diff
tools such as Eclipse diff and Git/SVN diff. Participation was
strictly voluntary with no compensation offered.

Prior to each study session, all participants were given a
twenty-minute tutorial to learn how to use CRITICS. We gave
them a live demo about inspecting a diff patch with CRITICS.
The participants first answered two warm-up questions about
the assigned diff patch. Then they were given a time to inspect
a diff patch and answer three questions about systematic
changes. All study tasks concern answering questions about
similar changes, because the goal of CRITICS is to support

inspection of similar changes, not all types of code changes.
The questions required participants to identify methods that
were changed similarly to a given location and to search
for potential anomalous locations where similar edits were
incorrect or completely missing. The three questions are de-
scribed in Table III. Table IV shows the percentage of correct
answers for each tool. To measure efficiency, we recorded the
task completion time from when participants started to inspect
source code to the time when they submitted the answers.

At the end of the user study, each participant was asked to
complete a post study survey to evaluate their experience with
CRITICS and Eclipse diff. First, they were asked to rate CRITICS

and Eclipse diff separately on the aspects of relevance, clarity,
and usefulness for locating similar changes and detecting
anomalies. The survey also included open-ended questions to
solicit qualitative feedback on how the users like or dislike
CRITICS and the suggestions for improving CRITICS.

We recorded each user study session with screen capture
software for further analysis. The participants were encour-
aged to speak out their thoughts, when conducting the code
review tasks. Regarding multiple choice questions about the
locations of systematic changes and anomalies, we asked the
participants to explicitly identify individual method locations.
The quotes from the study participants are extracted from these
conversations. The data and transcript are anonymized.
Identifying Similar Changes. 10 out of 12 participants an-
swered the question (Q1) about similarly changed locations
correctly with CRITICS. 5 out of 12 did with Eclipse diff.
We observe that Patch 2 usually required more template
configuration and search iterations in CRITICS, and participants



Q1 (Similar Changes) Q2 (Inconsistent Changes) Q3 (Missing Updates) Time
CRITICS diff CRITICS diff CRITICS diff CRITICS diff

Patch 1 (Simple) 100% (6/6) 50% (3/6) 100% (6/6) 33% (2/6) 100% (6/6) 83% (5/6) 0:18:32 0:20:24
Patch 2 (Complex) 67% (4/6) 50% (3/6) 100% (6/6) 83% (5/6) 83% (5/6) 33% (2/6) 0:20:20 0:30:53

TABLE IV: Average correctness of participants’ answers with and without CRITICS. For example, (2/6) means, two out of six
participants answered the question correctly.
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Fig. 3: Subjective Ratings for Critics and Eclipse Diff

often stopped refining the template after two or three iterations.
At that point, the customized template was still not general
enough to find all similar changes. Using Eclipse search with
a few keywords extracted from the patch often produced un-
stable search results depending on the choice of the keywords.
Detecting Inconsistent Changes. All 12 participants found
inconsistent change locations (Q2) correctly with CRITICS,
as opposed to 7 out of 12 with Eclipse diff. We observed
that CRITICS can help detecting inconsistent changes for both
simple and complex patches.
Detecting Missing Updates. 11 out of 12 participants pin-
pointed all missing updates correctly with CRITICS, while
only 4 out of 12 found missing updates with Eclipse diff.
We observed that Eclipse diff was comparable to CRITICS,
when inspecting a simple, small patch (Patch 1 with 160
line changes), while participants could locate a missed update
more accurately when using CRITICS than Eclipse diff for the
complex one (Patch 2 with 680 line changes).
Task Completion Time. Participants saved 6 minutes and 13
seconds with CRITICS on average, completing the tasks 31.9%
faster than Eclipse diff. For the simple patch (Patch 1), CRITICS

reduced task completion time by 9.2% on average, 48% at
most. But for the complex patch (Patch 2), it reduced time
by 34.2% on average, 60% at most. Consistent with the goal
of CRITICS to support investigation of systematic changes, it
was more useful when a patch consists of a large amount of
scattered similar edits.
User Feedback. After completing the user study, participants
completed a brief questionnaire to rate CRITICS and Eclipse
diff based on their experience. Figure 3 shows the subjective
ratings from the survey. CRITICS received higher ratings than
Eclipse diff from all participants, including how relevant the
found locations are, how clear the tool is and how useful the

tool is in locating similar edits and detecting anomalies.
We also solicited qualitative feedback from the participants.

They appreciated that CRITICS reduces the effort to investigate
similar changes, especially in a large system. Using CRITICS,
they only needed to inspect one location, as opposed to reading
changed lines file by file without having the global context of
what they are reviewing.

“I like the way it (Critics) automatically identifies possible
similar edits that I could miss and detects anomalous changes.
It really speeds up the code review process.”

However, opinions were divided on the usability of CRIT-
ICS’s UI. Three participants mentioned that its user interface
is not intuitive and would benefit from extra visual options
or instructions. They also suggested that CRITICS should
provide configuration hints, e.g., which identifier should be
generalized.

“It would be much more straightforward if CRITICS gave
some hints about which identifiers should be generalized.
Currently it seems totally depends on developer’s sense.”

In conclusion, participants were able to locate systematic
changes and detect anomalies more correctly and quickly in
code review tasks using CRITICS. They believed that CRITICS

could complement the use of diff during inspection of system-
atic changes.

V. DISCUSSION

Comparison with LASE. Our prior work LASE [20] auto-
mates systematic editing by searching for locations and apply-
ing custom edits to individual locations. It requires multiple
change examples as input to generate abstract transformation.
It is challenging to directly compare CRITICS with LASE,
because LASE’s template generation requires multiple exam-
ples apriori and is fixed, while CRITICS is an interactive tool
that a human can iteratively configure a template. Therefore,
we simulate a human-driven template configuration process
in CRITICS. From the lab study described in the previous
section, we find that users follow common patterns while
interactively generalizing the selected edit content and context.
They usually generalize one identifier or statement at a time
and re-run the search; if the search result degrades, they undo
the generalization and try a different identifier or statement.
In other words, their generalization strategy is similar to the
typical greedy search. When generalizing identifiers, users first
generalize a variable with a long name rather than a short one.
When excluding statements, users prefer to exclude the context
node on which a change is control dependent, such as if and
for. We encode these patterns in a test script to simulate the
interactive use of CRITICS. Then we compare LASE’s accuracy
with CRITICS’s accuracy at each iteration.



(a) F1 score for finding similar edit locations by excluding state-
ments.

(b) F1 score for finding similar edit locations by parameterizing
identifiers.

Fig. 4: F1 score on change template customization.

The oracle test suite is drawn from the systematic edits
identified by Park et al. [21] in Eclipse JDT and Eclipse
SWT and consists six sets of systematic changes. In this test
suite, the patch size ranges from 190 to 680 lines of edits.
The number of locations with systematic changes ranges from
three to ten locations. The first two changed locations are
used as input examples to LASE, using the same approach
described in Meng et al. [20]. Figure 4 describes the accuracy
variation in CRITICS’s simulation. Figure 4a represents F1
score (a harmonic mean of precision and recall) for finding
similar changes while varying the number of excluded nodes.
Figure 4b represents F1 score for finding similar changes,
while varying the number of generalized identifiers. Table V
shows the comparison of search accuracy between CRITICS and
LASE, including the iteration numbers till CRITICS achieves the
best result and the average execution time for each iteration.
In five out of six cases, CRITICS achieves the same or higher
accuracy than LASE within a few iterations, showing the
benefit of interactive template configuration as opposed to
fixed template configuration.
Threats to Validity. In terms of construct validity, in our lab
study, we measured the correctness of the answers and the time
taken to answer questions to measure developer productivity
in inspecting systematic changes. Other measures such as the
number of potential bugs detected could be used to measure

CRITICS LASE
Precision Recall Iteration Time(sec) Precision Recall

Patch 1 1 1 4 1.66 1 1
Patch 2 1 0.9 6 8.95 0.92 0.75
Patch 3 1 1 0 13.52 1 1
Patch 4 1 1 7 71.98 1 0.33
Patch 5 1 1 4 6.86 1 1
Patch 6 1 0.33 3 1.47 1 1
Average 1 0.87 4 17.41 0.99 0.84

TABLE V: Comparison between CRITICS and LASE

developer productivity for peer code reviews. In our user study,
we used both large and small patches and counterbalanced
the order and task assignment to mitigate learning effect.
Because the goal of CRITICS is to help inspect systematic
changes, the questions mainly pertain to the questions about
similar scattered changes, not general program comprehension
questions.

In terms of external validity, in our lab study, twelve student
developers were not familiar with Eclipse JDT, from where
patches are drawn. The lab study may not generalize to pro-
fessional developers who are familiar with their codebase. To
overcome this limitation, in our user study at Salesforce.com,
six engineers investigated the patches from their own system.

The study at Salesforce is a qualitative study based on six
interviews. Because of the qualitative nature of the study, we
do not make any quantitative statements about how much
productivity gain CRITICS can provide in comparison to their
current code review tool, COLLABORATOR. The study was
conducted only in one company. We do not believe this
is a significant limitation because the background of the
participants and the code review practice at Salesforce.com are
similar to other large software companies. In the comparison
with LASE, our test suite of systematic changes includes only
patches from Park et al.’s data set [21] and may not generalize
to projects other than Eclipse JDT and SWT.

To mitigate internal validity, in our lab study, before the
participants started the task, we asked them to inspect the
change example first and answer two questions to calibrate
their understanding. The first question required them to choose
true or false about detailed statements about the change to
ensure that they have carefully inspected the example. The
second question required them to identify changes similar to
the given example. The warm up questions helped them better
understand change similarity.

VI. RELATED WORK

Modern Code Reviews and Code Change Comprehension.
Rigby et al. conduct an investigation into code review practices
in open source development and find that developers can
understand small, logical, coherent units of code changes
better rather than large, unrelated changes [22]. Rigby et
al. also find general principles of code review practices and
the benefit of code review for knowledge sharing among
developers [23]. Bacchelli and Bird study modern code review
practices and find that a key challenge is lacking tool support



for code change comprehension [24]. Tao et al. also study the
challenges that developers face when they comprehend code
changes and find that modern code review tools must support
the capability to divide a large chunk of code changes into
sub logical groupings and to filter non-essential changes [5].
These findings motivate CRITICS. Barnett et al. also design
a static analysis technique to help developers to understand
code changes during code reviews [25]. They decompose
composite changes and cluster relevant ones using dependence
analysis. While our work shares the same goal of assisting
code change comprehension, our work focuses on inspecting
similar changes and detecting anomalies.
Code Search and Anomaly Detection. Chang et al. use graph
mining to detect implicit programming rules from system
dependence graphs and use these rules to find violations [26].
Wang et al. propose a dependence-based code search tech-
nique [11]. Their query language is capable of capturing
control and data dependences. Their work is later enhanced
with semantic topic modeling [27].

Instant code search techniques take a code example as input
and return other similar code examples on demand [28, 29].
In particular, CBCD detects recurring clone related bugs by
finding similar ASTs with program dependence information.
These techniques are based on code clone mining [10, 30]–
[33].

Several approaches detect inconsistencies among code
clones. CP-Miner [9], SecureSync [34] and Jiang et al.’s
work [35] find cloning-related inconsistencies by searching
for duplicated code. SPA categorizes four common types
of porting inconsistencies and detects discrepancies between
the surrounding context of systematic changes [36]. Lo et al.
actively incorporate incremental user feedback to continually
refine clone-based anomaly reports and selectively present
clone-based bugs [37]. Lin et al. detect differences across mul-
tiple clone instances to help with clone comprehension [38].

CRITICS differs from these code search and clone detection
techniques in two ways. First, CRITICS directly target investi-
gation of diff patches as opposed to a single program version.
Due to these differences, in our lab study, we could not directly
compare with existing clone-based search tools, because these
tools are not designed for inspecting diff patches. Second,
CRITICS allows users to interactively generalize a search
template to provide flexibility.
Systematic Change Inference. RefFinder finds the types and
locations of refactoring edits using pre-defined refactoring
rules [39]. LSdiff infers systematic change patterns at a coarse
granularity and summarizes them as logic rules [13]. It also
detects potential inconsistencies that violate the systematic
change patterns. LSdiff supports only coarse-grained analysis
at the level of method calls and field accesses. It also does
not leverage any human input and therefore it often discovers
a large amount of rules in an inefficient top-down manner,
while discarding most of them in a post-processing step.
In contrast, CRITICS allows a user to interactively refine an
abstract diff template to be used. Chianti groups related code
changes at a coarse granularity using predefined rules. To our

knowledge, none of these were evaluated with a user study
unlike ours [40].
Automating Systematic Edits. Andersen et al. propose generic
patch inference, which takes a set of example program trans-
formations and generate a generic patch to automate similar
edits to multiple locations [41]. LibSync recommends similar
API usage adaptation patterns but does not automate complex
edits [42]. SYDIT takes a single code change as input and
replicates similar change to a user provided target [43]. LASE

uses multiple change examples to automate similar changes to
multiple code fragments [20]. However, these approaches do
not provide users interactivity and flexibility to tune change
templates. In the comparison between CRITICS and our prior
work LASE (Section V), we show that this interactive feature
of CRITICS allows users to achieve high accuracy within a few
iterations.

This paper makes a unique contribution of conducting two
rigorous user studies to assess the effectiveness of CRITICS

during peer code reviews. The above prior work on automated
systematic editing was not evaluated using user studies. The
demonstration paper on CRITICS describes the user interface
features of CRITICS and does not include any technical algo-
rithm description and user studies [44].

VII. CONCLUSION

We present CRITICS, a novel approach for searching sys-
tematic changes and detecting potential anomalies during peer
code reviews. It takes as input a selected sub-region of diff
patch and allows a reviewer to customize a change template
by interactively generalizing the AST edits and surrounding
context. A user study at Salesforce.com shows that after
using CRITICS to investigate their own team’s patches, all
six participants said they would like CRITICS to be integrated
into their current code review environment, COLLABORATOR.
The participants saw the benefit of using CRITICS in detecting
missing or inconsistent updates, which is difficult to find using
their current code review tool. They also thought its interactive
template configuration and search feature was appropriate
for developers without deep knowledge of the codebase to
gradually learn about the codebase. The lab study shows
that human subjects could answer questions about systematic
changes 47.3% more correctly and 31.9% faster on average
with the assistance of CRITICS in comparison to the baseline
use of Eclipse diff. These results indicate that CRITICS should
help developers comprehend an underlying latent structure of
a diff patch and locate missed or inconsistent updates during
peer code reviews.

ACKNOWLEDGMENT

The authors would like to thank anonymous participants
from Salesforce.com and University of Texas at Austin for
their participation in the user study and their valuable insights
and feedback. This work was supported in part by Na-
tional Science Foundation under grants CCF-1117902, CCF-
1149391, SHF-0910919, CNS-1239498, and a Google Faculty
Award.



REFERENCES

[1] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, “Software inspec-
tions: An effective verification process,” IEEE software, vol. 6, no. 3,
pp. 31–36, 1989.

[2] A. Dunsmore, M. Roper, and M. Wood, “Practical code inspection
techniques for object-oriented systems: an experimental comparison,”
IEEE software, vol. 20, no. 4, pp. 21–29, 2003.

[3] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 38, no. 2-3, pp. 258–287, 1999, code
inspection, checklist.

[4] K. E. Weigers, Peer reviews in software: a practical guide. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[5] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012, p. 51.

[6] A. Dunsmore, M. Roper, and M. Wood, “Object-oriented inspection
in the face of delocalisation,” in ICSE ’00: Proceedings of the 22nd
International Conference on Software engineering. New York, NY,
USA: ACM, 2000, pp. 467–476, code inspection, code review, object-
oriented, delocalized.

[7] D. Dig and R. Johnson, “How do APIs evolve? a story of refactoring,”
Journal of software maintenance and evolution: Research and Practice,
vol. 18, no. 2, pp. 83–107, 2006.

[8] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton, “N degrees
of separation: multi-dimensional separation of concerns,” in ICSE ’99:
Proceedings of the 21st International Conference on Software Engineer-
ing. Los Alamitos, CA, USA: IEEE Computer Society Press, 1999,
pp. 107–119.

[9] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for finding
copy-paste and related bugs in operating system code.” in OSDI, 2004,
pp. 289–302.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[11] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu,
“Matching dependence-related queries in the system dependence
graph,” in Proceedings of the IEEE/ACM International Conference
on Automated software engineering, ser. ASE ’10. New York,
NY, USA: ACM, 2010, pp. 457–466. [Online]. Available: http:
//doi.acm.org/10.1145/1858996.1859091

[12] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and
security flaws using pql: a program query language,” in OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications. New
York, NY, USA: ACM, 2005, pp. 365–383.

[13] M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in ICSE ’09: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 309–319.

[14] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation,
ser. PLDI ’88. New York, NY, USA: ACM, 1988, pp. 35–46. [Online].
Available: http://doi.acm.org/10.1145/53990.53994

[15] M. Pawlik and N. Augsten, “RTED: a robust algorithm for the tree
edit distance,” Proceedings of the VLDB Endowment, vol. 5, no. 4, pp.
334–345, 2011.

[16] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM journal on computing,
vol. 18, no. 6, pp. 1245–1262, 1989.

[17] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An optimal
decomposition algorithm for tree edit distance,” in Automata, languages
and programming. Springer, 2007, pp. 146–157.
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