
Automated Transplantation and Differential Testing
for Clones

Tianyi Zhang, Miryung Kim
University of California, Los Angeles
{tianyi.zhang, miryung}@cs.ucla.edu

Abstract—Code clones are common in software. When apply-
ing similar edits to clones, developers often find it difficult to
examine the runtime behavior of clones. The problem is exacer-
bated when some clones are tested, while their counterparts are
not. To reuse tests for similar but not identical clones, GRAFTER
transplants one clone to its counterpart by (1) identifying
variations in identifier names, types, and method call targets, (2)
resolving compilation errors caused by such variations through
code transformation, and (3) inserting stub code to transfer
input data and intermediate output values for examination. To
help developers examine behavioral differences between clones,
GRAFTER supports fine-grained differential testing at both the
test outcome level and the intermediate program state level.

In our evaluation on three open source projects, GRAFTER
successfully reuses tests in 94% of clone pairs without inducing
build errors, demonstrating its automated code transplantation
capability. To examine the robustness of GRAFTER, we systemati-
cally inject faults using a mutation testing tool, MAJOR, and detect
behavioral differences induced by seeded faults. Compared with
a static cloning bug finder, GRAFTER detects 31% more mutants
using the test-level comparison and almost 2X more using the
state-level comparison. This result indicates that GRAFTER should
effectively complement static cloning bug finders.

I. INTRODUCTION

Code reuse via copying and pasting is a common practice
in software development [1]–[3]. Prior studies show that up to
25% of code in modern software contains code clones—code
similar to other code fragments elsewhere [4]–[6]. Manually
adapting clones is error-prone. Chou et al. show that a large
portion of operating system bugs is introduced by manual
porting mistakes between clones [7]. Juegens et al. find that
“nearly every second unintentionally inconsistent change to a
clone leads to a fault” [8]. Therefore, developers may want to
examine and contrast runtime behavior of clones. Fischer finds
that developers want to see how reused code works in terms
of runtime behavior [9]. Holmes et al. find that developers
want to leverage existing tests to validate reused code [10]. We
also find that industrial developers rely on regression testing
to check for inconsistent or missing edits on clones [11].

However, the situation is exacerbated due to a lack of tests,
where some clones are tested while their counterparts are not.
In fact, our study shows that, in 46% of studied clone pairs,
only one clone is tested by existing tests, but not its counterpart
(to be detailed in Section IV). No existing techniques can
help programmers reason about runtime behavior differences
of clones, especially when clones are not identical and when
clones are not tested. In the absence of test cases, develop-

ers can only resort to static analysis techniques to examine
clones [2, 3, 11]–[13], but these techniques are limited to find-
ing only pre-defined types of cloning bugs such as renaming
mistakes or control-flow and data-flow inconsistencies.

This paper presents a test reuse and differential testing
framework for clones, called GRAFTER. Given a pair of clones
and an existing test suite, GRAFTER helps programmers cross-
check runtime behavior by exercising the clones using the
same test. Test reuse for clones is challenging because clones
may appear in the middle of a method without a well-defined
interface (i.e., explicit input arguments and return type), which
also makes it hard to directly adapt test for reuse. Such intra-
method clones are often found by widely-used clone detectors
such as Deckard [2] or CCFinder [14]. GRAFTER identifies
input and output parameters of a clone to expose its de-facto
interface and then grafts one clone in place of its counterpart
to exercise the grafted clone using the same test.

Similar to how organ transplantation may bring incompat-
ibility issues between a donor and its recipient, a grafted
clone may not fit the context of the target program due to
variations in clone content. For example, if a clone uses
variables or calls methods that are not defined in the con-
text of its counterpart, simply copying a clone in place of
another will lead to compilation errors. To ensure type safety
during grafting, GRAFTER performs inter-procedural analysis
to identify variations in referenced variables and methods. It
then adapts the grafted clone using five transplantation rules
to handle the variations in referenced variables, types, and
method calls. Finally, it synthesizes stub code to propagate
input data to the grafted clone and then transfers intermediate
outputs back to the recipient. GRAFTER supports differential
testing at two levels: test outcomes (i.e., test-level comparison)
and intermediate program states (i.e., state-level comparison).
During differential testing, GRAFTER does not assume that
all clones should behave similarly nor considers that all
behavioral differences indicate bugs. In fact, a prior study
on clone genealogies [15] indicates that many syntactically
similar clones are used in different contexts and have intended
behavioral differences. The purpose of differential testing
in GRAFTER is rather to illuminate and expose behavioral
differences at a fine-grained level automatically and concretely
by pinpointing which variables’ states differ in which test.

We evaluate GRAFTER on 52 pairs of nonidentical clones
from three open-source projects: Apache Ant, Java-APNS,
and Apache XML Security. GRAFTER successfully grafts and

1 public class Copy extends Task{
2 private IncludePatternSet includes;
3
4 public void setIncludes(String patterns){
5 ...
6 if(patterns != null && patterns.length() > 0){
7 - StringTokenizer tok=new StringTokenizer(patterns,",");
8 - while(tok.hasMoreTokens()){
9 - includes.addPattern(tok.next());

10 - }
11 + String[] tokens = StringUtils.split(patterns, ",");
12 + for(String tok : tokens){
13 + includes.addPattern(tok);
14 + }
15 }
16 }
17 ...
18 }
19
20 public class IncludePatternSet{
21 public Set<String> set;
22 public void addPattern(String s) { set.add(s); }
23 ...
24 }

(a) Correctly edited clone in the Copy class

1 public class Delete extends Task{
2 private ExcludePatternSet excludes;
3
4 public void setExcludes(String patterns){
5 ...
6 if(patterns != null && patterns.length() > 0){
7 - StringTokenizer tok=new StringTokenizer(patterns,",");
8 - while(tok.hasMoreTokens()){
9 - excludes.addPattern(tok.next());

10 - }
11 + String[] tokens = StringUtils.split(patterns, ".");
12 + for(String tok : tokens){
13 + excludes.addPattern(tok);
14 + }
15 }
16 }
17 ...
18 }
19
20 public class ExcludePatternSet{
21 public Set<String> set;
22 public void addPattern(String s) { set.add(s); }
23 ...
24 }

(b) Inconsistenly edited clone in the Delete class

Fig. 1: Similar edits to update the use of StringTokenizer API to StringUtils.split in Copy and Delete.

1 @Test
2 public void testCopy(){
3 Task copyTask = FileUtils.createTask(FileUtils.COPY);
4 ...
5 copyTask.setIncludes("src/*.java, test/*.java");
6 JobHandler.fireEvent(copyTask);
7 assertTrue(checkFileCopied());
8 }

Fig. 2: A test case for the Copy class.

reuses tests in 49 out of 52 pairs of clones without inducing
compilation errors. Successfully reusing tests in 94% of the
cases is significant, because currently no techniques enable
test reuse for nonidentical clones appearing in the middle of
a method. GRAFTER inserts up to 33 lines of stub code (6
on average) to ensure type safety during grafting, indicating
that code transplantation and data propagation in GRAFTER

are not trivial. To assess its fault detection capability, we
systematically seed 361 mutants as artificial faults using the
MAJOR mutation framework [16]. We use Jiang et al.’s static
cloning bug finder [2] as a baseline for comparison. By
noticing runtime behavioral discrepancies, GRAFTER is more
robust at detecting injected mutants than Jiang et al.—31%
more using the test-level comparison and almost 2X more
using the state-level comparison. GRAFTER’s state-level com-
parison also narrows down the number of variables to inspect
to three variables on average. Therefore, GRAFTER should
complement static cloning bug finders by enabling runtime
behavior comparison. Our grafting technology may also have
potential to assist code reuse and repair [17]–[20].

The rest of the paper is organized as follows. Section II
illustrates a motivating example. Section III describes how
GRAFTER reuses tests from its counterpart clone by grafting
a clone. Section IV describes the evaluation of GRAFTER and
comparison to Jiang et al. Section V discusses threats to
validity and Section VI describes related work.

II. MOTIVATING EXAMPLE

This section motivates GRAFTER using an example based
on Apache Ant. The change scenario is constructed by us
to illustrate the difficulty of catching cloning bugs. Fig-
ure 1 shows the pair of inconsistently edited clones, one
from the setIncludes method in the Copy class (lines
6-15 in Figure 1a) and the other from the setExcludes

method in the Delete class (lines 6-15 in Figure 1b). These
clones are syntactically similar but not identical—the left
program uses a field includes of type IncludePatternSet
while the right program uses a field excludes of type
ExcludePatternSet. The Copy class implements the task
of copying files matching the specified file pattern(s). On
the other hand, Delete removes files that do not match the
pattern(s). Methods setIncludes and setExcludes both
split the input string by a comma and add each pattern to
a pattern set, includes and excludes respectively. Figure 2
shows a test case, testCopy, which creates a Copy object,
specifies two copied file patterns as a string "src/*.java,

test/*.java", and then checks if all java files in the src

folder and the test folder are copied to a target directory.
However, the Delete class is not tested by any existing test.
StringTokenizer is a legacy class and its usage is now

discouraged in new code. Therefore, Alice updates the use
of StringTokenizer API to StringUtils.split in both
Copy and Delete in Figure 1. However, she accidentally
changes the separator from ‘,’ to ‘.’ in Delete (line 11 in
Figure 1b). Such mistake is difficult to notice during manual
inspection, as these programs are similar but not identical. An
existing cloning bug finder by Jiang et al. would fail to find the
mistake, as it checks for only three pre-defined cloning bug
types via static analysis [2]: renaming mistakes, control con-
struct inconsistency, and conditional predicate inconsistency.
Accidentally replacing the separator does not belong to any of
the pre-defined cloning bug types.

1 public class Copy extends Task{
2 private IncludePatternSet includes;

3 + private ExcludePatternSet excludes;

4

5 public void setIncludes(String patterns){
6 ...
7 /* this is stub code inserted for data transfer*/

8 + ExcludePatternSet excludes_save = excludes;

9 + excludes = new ExcludePatternSet();

10 + excludes.set = includes.set;

11

12 /* the original code is replaced with the grafted code
from setExcludes*/

13 - if(patterns != null && patterns.length() > 0){
14 - String[] tokens = StringUtils.split(patterns, ",");
15 - for(String tok : tokens){
16 - includes.addPattern(tok);
17 - }
18 - }
19 + if(patterns != null && patterns.length() > 0){
20 + String[] tokens = StringUtils.split(patterns, ".");
21 + for(String tok : tokens){
22 + excludes.addPattern(tok);
23 + }
24 + }
25

26 /* this is stub code inserted for data transfer*/

27 + includes.set = excludes.set;

28 + excludes = excludes_save;

29 }
30 }

Figure 3: Grafter’s edits to reuse the original test of the
setInclude method in Copy.java on the setExclude method
in Delete.java. Lines 19-24 are the clone transplanted from
the setExclude method to the setInclude method. Line 3 is
the declaration statement Alice copied from Delete to avoid
the undefined identifier error. Lines 8-10 are to populate
data from includes to excludes to make sure the trans-
planted code receive the same inputs. Lines 27-28 are to
transfer the value updates on excludes back to includes for
the test oracle examination.

inter-procedural analysis to find identifiers referenced by the
clones under focus and their subroutines and detects varia-
tions between them.

Grafter first builds a call graph to identify all method
call targets referenced by the clone and its subroutines in
the donor program. Similarly, it also builds a call graph for
the counterpart clone in the recipient program. By compar-
ing the call graphs between the two, Grafter can identify
a set of methods that are called by the grafted clone and
its subroutine(s) but are not defined in the recipient. If
two methods are identical in both the method signature and
body, there is no need to port the method, because it is al-
ready defined in the recipient program and the method call
will behave the same. Otherwise, the invoked method must
be ported to the recipient program using code transforma-
tion rules discussed in Phase II.

Then Grafter performs control flow analysis on each clone
and generates an inter-procedural control flow graph based
on the call graph. Figure 4 shows such inter-procedural
control flow graph for the setIncludes method in Figure 1,
where nodes represent corresponding program statements,
solid edges represent control flow, and dashed edges repre-
sent method invocation. Particularly, the gray nodes in Fig-
ure 4 represent the clone region (line 6 and lines 11-15 in
Figure 1) in setIncludes. The CFG edge entering the clone

Start

If

...

def = {}
use = {patterns}

Consumed = (Def(Copy)∪Def(setIncludes) \ Def(clone))∩Use(clone)

 = {includes, patterns}

Affected
exit1

 = Use(clone) ∩ In-Scope(<exit1>) = {includes, patterns}

Affected
exit2

 = Use(clone) ∩ In-Scope(<exit2>) = {includes, patterns}

Assign

For

call

End

Start

call

End

def = {tokens}
use = {patterns}

def = {tok}
use = {tokens}

def = {}
use = {includes,
tok}

def = {patterns}
use = {}

def = {}

use = {set}

<entry>

<exit1>

<exit2>

setIncludes:

addPattern:

Def(Copy) = {includes}
Def(setIncludes) = {patterns, tokens, tok}
Def(clone) = {tokens, tok}
Use(clone) = {includes, patterns, tokens, tok}
In-Scope(<exit1>) = {includes, patterns}
In-Scope(<exit2>) = {includes, patterns}

Copy.class

IncludePatternSet.class

Figure 4: An inter-procedural control flow graph for the
setIncludes method in Figure 1. The CFG nodes in the
clone region are colored in gray. There is one entry edge
and two exit edges of the clone. Each node is labeled with
variables defined and used in the corresponding statement.

region is labeled with <entry> and the two edges exiting the
clone region are labeled with <exit1> and <exit2>.
There are two goals in this step with respect to identify-

ing variables referenced by clones. First, we need to identify
the variables used by the clone but not defined in the re-
cipient context so we can port their declarations in Phase
II to avoid compilation errors. Second, we need to decide
the data flowing into and out of the clone so we can insert
stub code to populate values between corresponding vari-
ables in Phase III. Both goals are achieved by capturing the
consumed variables at the entry(s) of the clone region and
the affected variables at the exit(s) of the clone region in
the control flow graph. A variable is consumed by a clone
if it is used but not defined within the clone and a variable
is affected by a clone if its value is potentially updated by
the clone. The consumed variables are also associated with
the data flowing into the clone and the affected variables are
associated with the potentially updated data flowing out of
the clone.

Grafter performs a combination of def-use analysis and
scope analysis to identify the consumed and the affected
variables. We implement an AST visitor to keep track of the
definitions, uses, and the block scope in both the donor and
recipient programs. In Figure 4, each CFG node is labeled
with the variables defined and used within the corresponding
statement. For example, the def set of the Assign node in
Figure 4 includes tokens because tokens is declared in the
corresponding statement, line 11 in Figure 1. Figure 4 does
not show the scope of individual variables but we associate
each variable with the range of its block as its scope and
where each variable is accessible. For example, the scope of

Original Clone (Deleted)

Grafted Clone (Inserted)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Fig. 3: GRAFTER grafts the clone in Delete (lines 19-24) in
place of the original clone in Copy (lines 13-18) for test reuse.
GRAFTER inserts stub code (highlighted in yellow).

To reuse the same test testCopy for Delete, GRAFTER

grafts the clone from Delete in place of the original clone
in Copy, as shown in Figure 3. As the grafted code uses an
undefined variable excludes, GRAFTER also ports its decla-
ration to Copy.java. GRAFTER ensures that the grafted clone
receives the same input data by populating excludes with
the value of includes (lines 8-10) and transfers the value
of excludes back to includes (lines 27-28). Therefore, the
value of excludes can flow into the same assertion check of
the original test. Additional stub code generated by GRAFTER

is highlighted in yellow in Figure 3.
After grafting, GRAFTER then runs testCopy on both clones

and finds that the test now fails on Delete, because the
string is not split properly. To help Alice further diagnose
failure symptoms, GRAFTER shows that tokens has a list {
"src/*.java", "test/*.java"} in Copy but { "src/*",
"java, test/*", "java" } in Delete due to a wrong split.
GRAFTER also shows that this difference has propagated to
corresponding variables includes and excludes.

III. CLONE GRAFTING AND TESTING

GRAFTER takes a clone pair and an existing test suite as
input and grafts a clone from the donor to the recipient to
make the test(s) of the recipient executable for the donor.
A donor program is the source of grafting and a recipient
program is the target of grafting. GRAFTER does not require
input clones to be identical. Clones could be the output
of an existing clone detector [14, 21] or be supplied by a

human. For example, lines 6-15 in setIncludes and lines
6-15 in setExcludes are clones found by DECKARD [2] in
Figure 1. Delete.java is the donor program and Copy.java

is the recipient program, as Alice wants to reuse the test of
Copy.java for Delete.java.

GRAFTER works in four phases. GRAFTER first analyzes
variations in local variables, fields, and method call targets
referenced by clones and their subroutines (Phase I). It also
matches corresponding variables at the entry and exit(s) of
clones, which is used for generating stub code and performing
differential testing in later phases. GRAFTER ports the donor
clone to replace its counterpart clone and declares undefined
identifiers (Phase II). To feed the same test input into the
grafted clone, GRAFTER populates the input data to newly
ported variables and transfers the intermediate output of the
grafted clone back to the test for examination (Phase III).
Finally, it runs the same test on both clones and compares
test outcomes and the intermediate states of corresponding
variables at the exit(s) of clones. We use Figure 1 as a running
example throughout this section.

A. Variation Identification

The goal of Phase I is to identify mappings between method
call targets, local variables, and fields at the entry and exit(s)
of each clone. GRAFTER leverages inter-procedural analysis to
find identifiers referenced by each clone and its subroutines.
It then determines which referenced identifiers are defined in
the donor but not in the recipient.

There are three goals with respect to finding variable
mappings at the entry and exit(s) of each clone. First, we need
to identify variables used by the donor clone but not defined
in the recipient clone, so GRAFTER can port their declarations
in Phase II to ensure type safety and avoid compilation errors.
Second, we need to decide the data flowing in and out of the
clone at the entry and exit(s), so we can insert stub code to
populate values between corresponding variables in Phase III.
Third, we compare the states of corresponding variables at
clone exit(s) for fine-grained differential testing in Phase IV.

These goals are achieved by capturing the consumed vari-
ables at the entry of the clone region and the affected variables
at the exit(s) of the clone region in the control flow graph. A
variable is consumed by a clone if it is used but not defined
within the clone. A variable is affected by a clone if its value
could be potentially updated by the clone. The consumed
variables are associated with the data flowing into the clone
and the affected variables are associated with the updated data
flowing out of the clone. GRAFTER performs a combination of
def-use analysis and scope analysis to identify consumed and
affected variables.

Given a clone F and its container method M and class C,
consumed variables at the clone’s entry can be approximated:

Consumed(F,M,C) = (Def (C)∪ Def (M) \ Def (F))∩Use(F)

Similarly, given a clone F , affected variables at an exit point
P can be approximated as following:

Affected(F ,P) = Use(F) ∩ In-Scope(P)

To assist the derivation of consumed and affected variables,
we define three functions. Def(F) returns the set of variables
declared within the fragment F . Use(F) returns the set of
variables used within the fragment. In-Scope(P) returns the
set of variables at a program point P . The set of affected
variables is an over-approximation of the variables that could
be updated by a clone at runtime. This set may include
variables only read but not mutated by the clone. However,
it is guaranteed to include all variables potentially updated by
the clone, thus capturing all data flowing out of it.

Consider setIncludes in Figure 1. Figure 4 shows an
inter-procedural control flow graph. Nodes represent corre-
sponding program statements, solid edges represent control
flow, and dashed edges represent method invocation. The gray
nodes in Figure 4 represent the clone region F (line 6 and
lines 11-15 in Figure 1) in setIncludes. The CFG edge
entering the clone region is labeled with <entry> and the two
edges exiting the clone region are labeled with <exit1> and
<exit2>. Each CFG node is labeled with the variables defined
and used within the corresponding statement. For example,
Def(F) includes tokens and tok. Variable patterns is not
included because it is declared as a method parameter in Fig-
ure 1, which is before the clone region F (line 6 and lines 11-
15). Use(F) returns includes, patterns, tokens, and tok.
The figure does not show the scope of individual variables
but we associate each variable with its scope and visibility.
For example, In-Scope(< exit2 >) returns patterns and
tokens. Putting these definitions together, the resulting set of
consumed variables at the entry of the clone is {includes,
patterns}. The resulting sets of affected variables at the two
exit edges are the same: {includes, patterns}.

By comparing the two sets of consumed variables,
{includes, patterns} and {excludes, patterns} at
the entry of clones using name similarity, we find that
includes and excludes are corresponding variables. There-
fore, GRAFTER knows that it must port the declaration state-
ment of the field excludes. The name similarity is computed
using the Levenshtein distance [22], i.e., the minimum num-
ber of single-character insertions, deletions, or substitutions
required to change one string into the other. The lower the
distance is, the more similar two field names are. This mapping
information is used to guide the process of redirecting data
into the grafted clone and back to the recipient in Phase III.
For example, GRAFTER populates the value of includes to
excludes at the entry and transfers the updates on excludes

back to includes at the exit (to be detailed in Section III-C).

B. Code Transplantation

Simply copying and pasting a clone in place of its counter-
part in the recipient could lead to compilation errors due to
variations in clone content. Phase II applies five transplantation
rules to ensure type safety during grafting. The rules are sound
in the sense that the resulting grafted code is guaranteed
to compile. To ensure type safety, our rules do not convert

Start

If

...

def = {}
use = {patterns}

Consumed = (Def(Copy)∪Def(setIncludes) \ Def(clone))∩Use(clone)
 = {includes, patterns}
Affectedexit1 = Use(clone) ∩ In-Scope(<exit1>) = {includes, patterns}

Affectedexit2 = Use(clone) ∩ In-Scope(<exit2>) = {includes, patterns}

Assign

For

call

End

Start

call

End

def = {tokens}
use = {patterns}

def = {tok}
use = {tokens}

def = {}
use = {includes,
tok}

def = {patterns}
use = {}

def = {}
use = {set}

<entry>

<exit1>

<exit2>

setIncludes:

addPattern:

Def(Copy) = {includes}
Def(setIncludes) = {patterns, tokens, tok}
Def(clone) = {tokens, tok}
Use(clone) = {includes, patterns, tokens, tok}
In-Scope(<exit1>) = {includes, patterns}
In-Scope(<exit2>) = {includes, patterns}

Copy.class

IncludePatternSet.class

Fig. 4: An inter-procedural control flow graph for the
setIncludes method in Figure 1. The CFG nodes in the
clone region are colored in gray. There is one entry edge
and two exit edges of the clone.

objects, if their types are not castable or structurally equivalent.
We conservatively choose not to graft clones referencing such
unrelated types and give the user a warning instead.
Variable Name Variation. If the grafted clone uses a vari-
able undefined in the recipient, GRAFTER moves its defi-
nition from the donor to the recipient. Consider Figure 1
where setIncludes and setExcludes use different vari-
ables, includes and excludes. When grafting the clone in
setExcludes to setIncludes, GRAFTER adds the definition
of excludes in line 3 of Copy.java in Figure 3. In particular,
if the grafted clone uses a variable that has already been
defined with a different type in the recipient, GRAFTER still
ports the definition but renames it and all its references by
appending _graft to avoid a naming conflict.
Method Call Variation. If the grafted clone calls a method
undefined in the recipient, GRAFTER ports its definition from
the donor to the recipient. Similar to the rule above, GRAFTER

renames it if it leads to a naming conflict.
Variable Type Variation. If the grafted clone uses a differ-
ent type compared with its counterpart, GRAFTER generates
stub code to convert the object type to the one compatible
with the recipient. For example, includes and excludes

in Figure 1 have different types, IncludePatternSet

and ExcludePatternSet. Simply assigning includes to
excludes leads to a type error. Thus, GRAFTER preserves
the original value of excludes in line 8, creates a new
ExcludePatternSet instance in line 9, and populates the
field sets from the IncludePatternSet object to the

Algorithm 1: Heuristics for transfering variable values
Input : Let v1 and v2 be a pair of mapped variables. In this algorithm, each

variable symbol is an abstraction, containing the name, type, and field
information, which guides the generation of stub code.

Output: Let code be the stub code to tranfer the value of v1 to v2. It starts with an
empty string and ends with a sequence of statements generated using a few
heuristics.

Algorithm transfer(v1, v2)
1 code := “”
2 if v1.name == v2.name then
3 return “”
4 if v1.type == v2.type or v1.type is castable to v2.type then
5 return “v2.name = v1.name;”
6 if v1.type structurally equivalent to v2.type then
7 code + = “v2.name = new v2.type();”
8 match := stableMatching (v1.fields, v2.fields)
9 foreach fi, fj in match do

10 code + = transfer (fi, fj)
11 return code

Procedure stableMatching(s1, s2)
12 match := ∅
13 unmatch := s2
14 while unmatch is not empty do
15 f2 := next field in unmatch
16 foreach f1 in s1 do
17 if f1.type == f2.type or f1.type is castable to f2.type or f1.type

is structurally equivalent to f2.type then
18 if f1 ∈ match.keys then
19 f′2 := match.get(f1)
20 d1 := levenshteindistance (f1.name, f2.name)
21 d2 := levenshteindistance (f1.name, f′2.name)
22 if d1 < d2 then
23 match.put(f1, f2)
24 unmatch.add(f′2)

else
25 match.put(f1, f2)
26 return match

ExcludePatternSet object in line 10 in Figure 3.
Expression Type Variation. The data type of an expression
can be different based on the variables, operators, and method
targets used in the expression. Such variation can cause
type incompatibility in the returned object if it appears in
the return statement. GRAFTER first decomposes the return
statement return X; into two statements, one storing the
expression value to a temporary variable Type temp = X;

and the other returning the temporary value return temp;.
GRAFTER applies the Variable Type Variation rule above on
temp to convert its type to a compatible type in the recipient.
Recursion. If both container methods in the donor and recipi-
ent have recursive calls in the clone region, GRAFTER updates
the recursive call targets in the grafted clone.

C. Data Propagation

In medicine, surgeons reattach blood vessels to ensure the
blood in the recipient flows correctly to the vessels of the
transplanted organ. Similarly, GRAFTER adds stub code to
ensure that (1) newly declared variables consume the same
input data as their counterparts in the recipient and (2) the
updated values flow back to the same test oracle.

Given each mapped variable pair v1 and v2 in Phase II,
GRAFTER generates stub code to propagate the value of v2
to v1 at the entry of the clone and to transfer the updated
value of v1 back to v2 at the exit. In Algorithm 1, the
main function, transfer, takes two variables v1 and v2 as
input and produces a sequence of program statements for data

propagation. The symbols v1 and v2 in Algorithm 1 abstract
their variable name, type, and field information.
Heuristic A. Given two variables v1 and v2 with the same
name and type, there is no need to propagate the value from
v1 to v2. In Figure 1, both clones use the method parameter
patterns and the references to patterns in the grafted
code are automatically resolved to the same parameter in the
recipient. Algorithm 1 returns an empty string in this case.
Heuristic B. Given two variables v1 and v2 of the same type
or castable types due to subtyping, the value of v2 can be
directly assigned to v1 without inducing type casting errors.
Algorithm 1 adds an assignment statement.

Heuristic C. Given v1 of type t1 and v2 of type t2, if t1 and
t2 are structurally equivalent, we propagate corresponding sub
fields from v2 to v1. Two types are structurally equivalent
if (1) they have the same number of fields, and (2) for
each field in one type, there exists a field in another type
that has either the same or structurally equivalent type. For
example, IncludePatternSet and ExcludePatternSet

are structurally equivalent because both have only one sub-
field set of type Set<String> in Figure 1. To propagate
data at the clone entry, GRAFTER first preserves the orig-
inal ExcludePatternSet object in line 8, creates a new
ExcludePatternSet instance in line 9, and then populates
the field set from the IncludePatternSet’s set field in
line 10 in Figure 3. At the clone exit, the updates on excludes
are transferred to includes by setting field set in line 27
and the original reference is restored to excludes in line 28.

Because GRAFTER allows the fields of structurally equivalent
types to have different names and orders, GRAFTER identifies
n-to-n sub-field matching. This problem can be viewed as a
stable marriage problem (SMP) and is solved using the Gale-
Shapley algorithm [23]. The stableMatching procedure in
Algorithm 1 establishes field mappings based on type compat-
ibility and name similarity. The stableMatching procedure
takes two sets of fields, s1 and s2 as input. It creates an empty
map match and adds all fields in s2 to unmatch. For each
field f2 in unmatch, GRAFTER compares it with any field f1 in
s1. If f1 and f2 have the same or structurally equivalent types
and their name similarity is greater than the current match f1

to f′2 (if any), f2 is a better match than f′2. GRAFTER puts a
mapped pair (f2, f1) to match and adds f′2 to unmatch. This
process continues until unmatch is empty.
Heuristic D. If a data type or its field is an array or a collection
such as List or Set of the same or structurally equivalent
type, GRAFTER synthesizes a loop, in which each iteration
populates corresponding elements using Algorithm 1.

D. Differential Testing

GRAFTER supports behavior comparison at two levels.
Test Level Comparison. GRAFTER runs the same test on two
clones and compares the test outcomes. If a test succeeds on
one clone but fails on the other, behavior divergence is noted.
State Level Comparison. GRAFTER runs the same test on
two clones and compares the intermediate program states

for affected variables at the exit(s) of the clones. GRAFTER

instruments code clones to capture the updated program states
at the exit(s) of clones. GRAFTER uses the XStream library1 to
serialize the program states of affected variables in an XML
format. Then it checks if two clones update corresponding
variables with the same values. State-level comparison is more
sensitive than test outcome comparison.

GRAFTER is publicly available with our experiment dataset.2

Its GUI allows users to experiment with clone grafting and
revert edits after examining runtime behavior. Therefore, the
inserted stub code is not permanent and does not need to be
comprehended by users. Using GUI, users can easily discard
tests that do not preserve the desired semantics.

IV. EVALUATION

Our evaluation investigates three research questions.
• RQ1: How successful is GRAFTER in transplanting code?
• RQ2: How does GRAFTER compare with a static cloning

bug finder in terms of detecting behavioral differences?
• RQ3: How robust is GRAFTER in detecting unexpected

behavioral differences caused by program faults?
We use DECKARD [21] to find intra-method clones (i.e.,

clone fragments appearing in the middle of a method) from
three open-source projects. Apache Ant is a software build
framework. Java-APNS is a Java client for the apple push
notification service. Apache XML Security is a XML signature
and encryption library. Ant and XML Security are well-known
large projects with regression test suites. In Table I, LOC
shows the size in terms of lines of code. Test# shows the
number of JUnit test cases. Branch and Stmt show branch and
statement coverage respectively, both measured by JaCoCo.3

Pair# shows the number of selected clone pairs.
Because GRAFTER’s goal is to reuse tests for nonidentical

clones, we include clones meeting the following criteria in our
dataset: (1) each clone pair must have at least one clone exer-
cised by some tests, (2) clones must not be identical, because
grafting is trivial for identical clones, (3) each clone must
have more than one line, (4) each clone must not appear in
uninteresting areas such as import statements and comments.
These are not restrictions on GRAFTER’s applicability, rather
we target cases where GRAFTER is designed to help (e.g., tests
exist for reuse) and where grafting clone is hard (e.g., clones
with variations and without well-defined interfaces).

Subject LOC Test# Branch Stmt Pair#
ant-1.9.6 267,048 1,864 45% 50% 18
Java-APNS-1.0.0 8,362 103 59% 67% 7
xmlsec-2.0.5 121,594 396 59% 65% 27

TABLE I: Subject Programs

A. Grafting Capability

We use GRAFTER to graft clones in each pair in both direc-
tions. A pair of clones is considered successfully grafted if and

1http://x-stream.github.io/
2http://web.cs.ucla.edu/∼tianyi.zhang/grafter.html
3http://www.eclemma.org/jacoco/

only if there is no compilation error in both directions. Table II
shows 52 clone pairs in our dataset. Column Type shows
types of code clones in our dataset based on a well-known
clone taxonomy [24, 25]. Type I clones refer to identical
code fragments. Type II clones refer to syntactically identical
fragments except for variations in names, types, method call
targets, constants, white spaces, and comments. Type III clones
refer to copied code with added and deleted statements.
Because variations in variable names, types, method calls, and
constants are all grouped as Type II clones, we enumerate
individual kinds of variations in column Variation. Since
grafting identical code is trivial, our evaluation focuses on
Type II and III clones not to artificially inflate our results.

Column Tested indicates whether both clones are covered
by an existing test suite (i.e., full) or only one of the two
is covered (i.e., partial). Success shows whether GRAFTER

successfully grafts clones without inducing compilation errors.
∆ shows lines of stub code inserted by GRAFTER and Prpg
shows the kinds of heuristics applied for data propagation,
described in Section III-C. Branch and Stmt show the branch
and statement coverage over the cloned regions in each pair
before and after test reuse respectively.

GRAFTER successfully grafts code in 49 out of 52 pairs
(94%). In 3 cases, GRAFTER rejects transplantation, because
it does not transform objects, unless they are hierarchically
related or structurally equivalent to ensure type safety. In
Table II, the corresponding rows are marked with 7 and
—. On average, 6 lines of stub code is inserted. GRAFTER

synthesizes assignment statements for 30 cases, in 3 of which
require type transformation between objects with structurally
equivalent types. GRAFTER synthesizes a loop to propagate
data between two arrays of structurally equivalent objects in
pair#24. Even when the mapped variables have the same type
and name, additional stub code may be required, when one
clone references extra identifiers undefined in another context
(e.g., pairs#47, 48, 52). In some cases, the generated stub code
is over 30 lines long, indicating that naı̈ve cut and paste is
definitely inadequate for ensuring type safety and data transfer.
GRAFTER automates this complex stub code generation.

By reusing tests between clones, GRAFTER roughly doubles
the statement coverage and the branch coverage of partially
tested clone pairs. For partially tested Type II clone pairs,
statement coverage improves from 49% to 98% and branch
coverage improves from 34% to 68%. For partially tested
Type III clone pairs, we observe similar improvement (36% to
68% and 27% to 49%). For fully tested clones pairs, statement
coverage is still improved by augmenting tests.

B. Behavior Comparison Capability

We use GRAFTER to detect behavioral differences on the 49
pairs of successfully grafted clones. We hypothesize that by
noticing fine-grained behavior differences at runtime, GRAFTER

can detect potential cloning bugs more effectively than Jiang
et al. [2] that detect three pre-defined bug types:
• Rename Mistake: in Figure 5a, the right clone performs a

null check on l_stride but then dereferences r_stride

http://x-stream.github.io/
http://web.cs.ucla.edu/~tianyi.zhang/grafter.html
http://www.eclemma.org/jacoco/

ID Type Variation Tested Graft Branch Stmt Behavior Comparison Mutation
Success ∆ Prpg Before After Before After Test State Jiang Test State Jiang

1 II var, call full X 9 B 75% 75% 100% 100% 0/8 0/4 7 10/28 12/28 12/28
2 II var full X 8 B 100% 100% 100% 100% 0/10 0/2 7 4/4 4/4 4/4
3 II var full X 8 B 50% 50% 75% 75% 0/1 0/2 7 2/4 2/4 4/4
4 II var, call full X 9 B 50% 50% 75% 75% 0/1 0/3 7 2/6 2/6 6/6
5 II var, call full X 10 A, B 100% 100% 100% 100% 0/13 2/7 7 4/8 4/8 8/8
6 II var full X 6 B 100% 100% 100% 100% 0/38 2/3 7 12/12 12/12 0/12
7 II var full X 23 B 100% 100% 100% 100% 0/38 5/5 7 20/22 20/22 6/22
8 II var full X 8 B 50% 50% 88% 88% 0/36 2/2 7 2/6 6/6 4/6
9 II type, call full X 16 A 33% 66% 50% 80% 2/3 4/7 7 — — —
10 II var full X 3 A, B 88% 100% 93% 100% 0/37 8/9 7 13/30 30/30 12/30
11 II var full X 7 B 100% 100% 100% 100% 0/14 3/5 7 4/4 4/4 4/4
12 II call full X 0 B 50% 50% 75% 75% 60/157 3/4 7 — — —
13 II var, type, call, lit full X 6 A, C 63% 63% 100% 100% 1/1 10/11 7 — — —
14 II var, type, call, lit full X 6 A, C 63% 63% 100% 100% 1/1 10/11 7 — — —
15 II type, call full 7 — — 33% — 45% — — — — — — —
16 II var, type, call full X 4 A, B 100% 100% 100% 100% 15/45 2/7 7 — — —
17 II var, type full X 3 B 25% 25% 14% 14% 54/54 4/5 X — — —
18 II var full X 6 B 75% 100% 75% 100% 0/116 0/3 7 4/6 4/6 0/6
19 II lit full X 0 A 25% 25% 17% 17% 0/1 1/4 7 2/6 2/6 6/6
20 II type, lit full X 0 A 66% 66% 80% 80% 4/4 2/2 7 — — —
21 II lit full X 0 A 75% 75% 83% 83% 0/2 0/4 7 2/6 2/6 4/6
22 II var full X 9 B 50% 50% 71% 71% 0/307 0/5 7 2/24 4/24 6/24
23 II call full X 0 A 100% 100% 100% 100% 160/168 2/3 7 — — —
24 II type, lit full X 11 A, C, D 70% 70% 77% 77% 1/1 1/4 7 — — —

Type II (full) 23/24
(96%) 7 65% 68% 80% 84% 9/23

(39%)
16/23
(70%)

1/23
(4%)

83/166
(50%)

108/166
(65%)

76/166
(46%)

25 II var partial X 6 B 50% 100% 50% 100% 0/1 1/29 7 2/4 4/4 4/4
26 II var partial X 6 B 50% 100% 50% 100% 0/1 1/29 7 2/4 3/4 4/4
27 II var partial X 6 B 50% 100% 50% 100% 0/1 1/29 7 3/4 4/4 0/4
28 II lit partial X 0 A 25% 50% 42% 84% 0/1 2/2 7 4/12 12/12 4/12
29 II var partial X 6 B 50% 100% 50% 100% 0/4 1/3 7 2/2 2/2 0/2
30 II var, type partial X 6 B 50% 100% 50% 100% 0/4 1/3 X 2/2 2/2 1/2
31 II var, type partial X 6 B 50% 100% 50% 100% 0/4 1/3 X 2/2 2/2 1/2
32 II var partial X 3 A, B 50% 100% 50% 100% 0/5 0/1 7 2/2 2/2 2/2
33 II var, lit partial X 3 B 25% 50% 50% 100% 0/1 1/2 7 0/8 2/8 2/8
34 II type, call partial X 0 A 25% 50% 50% 100% 0/21 5/7 7 6/20 7/20 4/20
35 II var, type, call partial 7 — — 50% — 50% — — — — — — —
36 II var, type, call, lit partial 7 — — 25% — 50% — — — — — — —
37 II var, lit, call partial X 4 B 25% 50% 50% 100% 2/2 1/2 7 — — —
38 II var, lit partial X 3 B 25% 50% 50% 100% 0/1 1/2 7 1/8 6/8 2/8

Type II (partial) 12/14
(86%) 4 34% 68% 49% 98% 1/12

(8%)
11/12
(92%)

2/12
(17%)

26/68
(38%)

46/68
(68%)

24/68
(36%)

Type II Total 35/38
(92%) 6 59% 68% 73% 87% 10/35

(29%)
27/35
(77%)

3/35
(9%)

109/234
(47%)

154/234
(66%)

100/234
(43%)

39 III call, extra full X 2 A 100% 100% 100% 100% 10/21 4/6 X 22/26 22/26 10/26
40 III call, lit, extra full X 33 A 38% 38% 68% 68% 1/3 2/8 X — — —
41 III type, extra full X 0 A 70% 70% 100% 100% 0/4 6/11 X 18/30 23/30 8/30
42 III var, extra full X 0 A 51% 68% 70% 81% 33/156 8/13 X — — —

Type III (full) 4/4
(100%) 9 54% 65% 77% 84% 3/4

(75%)
4/4

(100%)
4/4

(100%)
40/56
(71%)

45/56
(80%)

18/56
(32%)

43 III var, call, extra partial X 32 B 36% 64% 50% 88% 0/3 1/5 X 15/29 29/29 7/29
44 III call, extra partial X 8 A 33% 66% 43% 86% 2/2 3/8 X — — —
45 III var, extra partial X 10 B 20% 40% 20% 40% 14/14 2/3 X — — —
46 III var, extra partial X 6 B 25% 50% 25% 50% 14/14 2/3 X — — —
47 III call, extra partial X 1 A 25% 50% 46% 100% 0/2 4/5 X 3/38 3/38 0/38
48 III extra partial X 1 A 25% 50% 30% 70% 0/4 1/4 X 0/4 0/4 2/4
49 III var, lit, extra partial X 4 A, B 17% 50% 30% 70% 4/4 4/4 7 — — —
50 III var, lit, extra partial X 4 A, B 17% 50% 30% 70% 4/4 5/5 X — — —
51 III var, lit, extra partial X 1 A 17% 50% 30% 70% 4/4 5/5 X — — —
52 III lit, extra partial X 3 A 17% 50% 30% 70% 1/1 3/3 X — — —

Type III (partial) 10/10
(100%) 7 27% 49% 36% 68% 7/10

(70%)
10/10

(100%)
9/10

(90%)
18/71
(25%)

32/71
(45%)

9/71
(13%)

Type III Total 14/14
(100%) 8 39% 60% 56% 81% 10/14

(71%)
14/14

(100%)
13/14
(93%)

58/127
(46%)

77/127
(61%)

27/127
(21%)

Type II & III Total 49/52
(94%) 6 50% 72% 67% 83% 18/47

(38%)
39/47
(83%)

14/47
(29%)

167/361
(46%)

231/361
(64%)

127/361
(35%)

TABLE II: Evaluation Benchmark

due to a renaming mistake.
• Control-flow Construct Inconsistency: in Figure 5b, the

left clone is enclosed in an if statement, while the right
clone is enclosed in a for loop.

• Conditional Predicate Inconsistency: in Figure 5c, though
both clones are in if branches, the if predicates are dif-
ferent: one calls strncmp which takes three arguments,
while the other calls strcmp which takes two arguments.

In Table II, Behavior Comparison shows whether
GRAFTER detects behavioral differences in each clone pair.

Test shows how many tests exhibit different test outcomes.
State shows how many variables exhibit state differences
using GRAFTER’s state-level comparison. Jiang shows whether
Jiang et al. detect cloning bugs Xor not 7.

GRAFTER detects test-level differences in 20 pairs of clones
and detects state-level differences in 41 pairs. On the other
hand, Jiang et al. detect differences only in 16 pairs because
they ignore behavioral differences at runtime caused by using
different types and calling different methods. For example,
pair#9 from Apache Ant in Figure 7 uses different object

if(l_stride!=NULL){
mps_cdiv_q(X1,X1,

l_stride ->value);

}

if(l_stride!=NULL){
mps_cdiv_q(X1,X1,

r_stride ->value);

}

(a) Renaming mistake.

if(cmd_type==READ_M2){
msgbuf[xa_count*3]=0;
msg(DBG_XA1, ...);

}

for(i=0;i<count;i++){
msgbuf[i*3]=0;
msg(DBG_SQ1, ...);

}

(b) Control-flow construct inconsistency.

if(length>=9&& strcmp (

buffer,"EESOXSCSI",9){
buffer+=9;
length+=9;

}

if(length>=11&& strncmp (

buffer,"CUMANNASCSI2"){
buffer+=11;
length+=11;

}

(c) Conditional predicate inconsistency.

Fig. 5: Three examples of cloning bugs by Jiang et al.

types, TarFileSet and ZipFileSet. Given the same input
variables p and o, the clones enter different branches due to
different runtime type checks (i.e., instanceof predicates).
Because these runtime checks are syntactically isomorphic
and there are no renaming mistake, Jiang et al. report no
inconsistency. 13 of 15 renaming mistakes detected by Jiang
et al. are in Type III clones, because Jiang et al. compare
unique identifiers in each clone to detect renaming mistakes
and added statements often lead to extra variable counts. In
other words, by definition, they consider almost all Type III
clones as cloning bugs.

Figure 6a shows that state-level difference is noted in 84%
of pairs, while test outcome difference is noted in 41% of
pairs. State-level comparison being more sensitive than test-
level comparison is expected, because some program states are
not examined by test oracle checking. As GRAFTER focuses its
comparison scope to only affected variables, the size of state-
level comparison is manageable, three variables on average.

8
16%

21
43%

20
41%

No Differences

State Differences Only

Test and State Differences

(a) GRAFTER

0
Type II Type III

Apache Ant

33
67%

1
2%

15
31%

No Cloning Bug

Inconsistent Conditional Predicate

Renaming Mistake

(b) Jiang et al.

Fig. 6: Comparison between GRAFTER and Jiang et al.

C. Fault Detection Robustness
To systematically assess the robustness of GRAFTER in

detecting unexpected behavioral differences caused by pro-
gram faults, we use the MAJOR mutation framework to inject

361 mutants into 30 pairs of clones. The 19 pairs where
the test-level comparison already exhibits differences without
adding mutants are marked with — and excluded from the
study in order not to over-inflate our results. Each mutant
represents an artificial cloning bug and it is injected to only
one clone in each pair. We then use GRAFTER to check
whether behavioral difference is exhibited at runtime. Table III
shows eight kinds of mutants injected by MAJOR. A mutant
is detected by GRAFTER’s test-level comparison, if GRAFTER

exposes test outcome differences in one or more tests after
injecting the mutant. A mutant is detected by GRAFTER’s state-
level comparison, if there is an affected variable with a state
value different from its corresponding variable’s state value.

In Table II, columns in Mutation show the mutation experi-
ment results. Test shows how many mutants are detected using
GRAFTER’s test-level comparison. For example, 10/28 indicates
that 10 out of 28 mutants are detected using GRAFTER’s test-
level comparison. Similarly, State shows how many mutants
are detected using GRAFTER’s state-level comparison while
Jiang shows how many mutants are detected by Jiang et al.

Operator Description Example
AOR Arithmetic operator replacement a + b→ a− b
LOR Logical operator replacement a ∧ b→ a|b
COR Conditional operator replacement a ∨ b→ a&&b
ROR Relational operator replacement a == b→ a> = b
SOR Shift operator replacement a>>b→ a<<b
ORU Operator replacement unary ¬a→∼ a

STD Statement deletion operator:
delete (omit) a single statement

foo(a, b) →
// foo (a, b)

LVR
Literal value replacement:
replace by a positive value,
a negative value or zero

0 → 1
0 → -1

TABLE III: 8 kinds of mutants injected by MAJOR

Overall, GRAFTER detects 167 mutants (46%) using the test-
level comparison and 231 mutants (64%) using the state-level
comparison. This finding that the state-level comparison is
more sensitive to seeded mutants than the test-level com-
parison is consistent with the literature of strong and weak
mutation testing [26]–[28]. Jiang et al. detect 127 mutants
(35%) only, as shown in Figure 8. GRAFTER outperforms Jiang
et al. by detecting 31% more mutants at the test level and
almost twice more at the state level. Its mutant detection ability
is similar for both Type II and III clones.

Figure 9 shows GRAFTER is less biased than Jiang et
al. when detecting different kinds of mutants. Jiang et al. detect
60% of COR mutants and 44% of STD mutants but less than
20% in other mutant types. This is because Jiang et al. only
detect three pre-defined types of cloning bugs—removed state-
ments (STD mutants) often flag renaming mistakes, and COR
mutants flag inconsistent conditional predicate updates. Be-
cause many removed statements do not affect program states
examined by test oracles, GRAFTER’s test-level comparison
detects fewer STD mutants than Jiang et al. GRAFTER does
not detect mutants in eight AOR mutants, because they are all
injected in an untested branch in pair#22. Jiang et al. do not
detect these AOR mutants because they ignore inconsistencies
in arithmetic operators. In summary, our experiment shows

1 File: /org/apache/tools/ant/types/TarFileSet.java
2 protected AbstractFileSet getRef(Project p){
3 dieOnCircularReference();
4 Object o = getRefid().getReferencedObject(p);
5 if(o instanceof TarFileSet){
6 return (AbstractFileSet)o;
7 }else if (o instanceof FileSet){
8 TarFileSet zfs = new TarFileSet((FileSet)o);
9 configureFileSet(zfs);

10 return zfs;
11 }else{
12 throw new Exception(..);
13 }
14 }

1 File: /org/apache/tools/ant/types/ZipFileSet.java
2 protected AbstractFileSet getRef(Project p){
3 dieOnCircularReference();
4 Object o = getRefid().getReferencedObject(p);
5 if(o instanceof ZipFileSet){
6 return (AbstractFileSet)o;
7 }else if (o instanceof FileSet){
8 ZipFileSet zfs = new ZipFileSet((FileSet)o);
9 configureFileSet(zfs);

10 return zfs;
11 }else{
12 throw new Exception(..);
13 }
14 }

Fig. 7: Type II clones (Pair#9) where GRAFTER detects behavioral differences and Jiang et al do not.

167

231

127

194

130

234

0

50

100

150

200

250

300

350

400

Test-level
Comparison

State-level
Comparison

Jiang et al.

Undetected Mutants

Detected Mutants

Fig. 8: Mutant detection

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ROR LVR COR STD ORU AOR

Test-level Comparison State-level Comparison Jiang et al.

Fig. 9: Mutant killing ratio for different mutant kinds

that GRAFTER can complement a static cloning bug finder via
test reuse and differential testing.

V. DISCUSSION

In terms of external validity, since clones in our study are
found using an AST-based clone detector [21], our dataset
does not include Type IV clones—functionally similar code
without any syntactic resemblance. For Type IV clones, a
programmer may need to provide the correspondence between
variables to enable differential testing. In Section IV-C, we
use mutants as a replacement for real faults to assess the
robustness of GRAFTER. Recent studies [29, 30] find a strong
correlation between mutants and real faults, so our results
should generalize to real faults.

In terms of internal validity, like other dynamic approaches,
GRAFTER’s capability to expose behavioral differences is af-
fected by test coverage and quality. If an existing test cov-
ers only some branches within a clone, GRAFTER may not
expose behavioral differences in uncovered code. However,

GRAFTER is still useful for boosting test coverage through code
transplantation. GRAFTER’s transplantation is guided by the
syntactic resemblance of input and output variables. GRAFTER

matches variables based on name and type similarity. This
heuristic works well for real-world clones in our evaluation,
which can be attributed to the fact that these clones are intra-
project clones and developers in the same project may follow
similar naming conventions. However, manual adjustments
may be needed when variables have significantly different
names. Experimentation with cross-project clones and alter-
native matching heuristics [31, 32] remain as future work.

In terms of construct validity, GRAFTER conservatively
chooses not to graft clones referencing unrelated types—
not castable nor structurally equivalent. This limit can be
overcome by allowing programmers to provide user-defined
type transformation functions. GRAFTER grafts clones rather
than tests. Transplanting tests could have the advantage of
minimizing impact on the functionality under test. Extending
GRAFTER to transplant tests remains as future work.

In Section IV-B, we do not assume that all clones should
behave similarly at runtime nor we argue that all behavioral
differences indicate cloning bugs. Rather, GRAFTER helps
detect behavioral differences concretely and automatically.
Therefore, it is necessary for the authors of clones to con-
firm whether detected behavioral differences are intended or
represent potential bugs. Assessing if the generated tests are
valuable to the authors remains as future work.

VI. RELATED WORK

Test Reuse for Clones. Skipper copies associated portions of
a test suite when developers reuse code [33]. It determines
relevant test cases and transforms them to fit the target system.
Skipper is built on Gilligan [10, 34] and requires users to
provide a pragmatic reuse plan to guide the transformation
process. Skipper assumes that clones are full-feature clones at
the level of methods and classes. It is infeasible to empirically
compare GRAFTER with Skipper due to the requirement of
having a reuse plan. GRAFTER differs from Skipper in three
perspectives. First, GRAFTER supports sub-method level clones
without explicit interfaces. Second, GRAFTER does not require
a reuse plan but rather leverages the syntactic resemblance
between clones to guide the grafting process. Third, Skipper
may require manual adjustments to fix compilation errors
when the reuse plan is incomplete. In contrast, GRAFTER is

fully automated using transplantation rules (Section III-B) and
data propagation heuristics (Section III-C).

By inferring code correspondences, Jigsaw [35] decides
which code to be copied, renamed, or deleted. In contrast,
GRAFTER aims to enable differential testing for clones.
Clone Inconsistency Detection. Several static techniques de-
tect copy and paste bugs. CP-Miner finds renaming mistakes
between clones [3]. Jiang et al. detect three types of cloning
bugs (mentioned in Section IV) [2]. SPA also detects redun-
dant operations along with similar cloning bug types [13].
Lo et al. actively incorporate incremental user feedback to
selectively filter cloning bugs [36]. Critics leverages interactive
user feedback to identify inconsistent edits to clones [11].
Unlike these techniques, GRAFTER grafts clones to facilitate
test reuse and enable runtime behavior comparison.
Dynamic Clone Detection. Dynamic clone detectors can find
semantic clones that static clone detectors do not find [37]–
[40]. Juergens et al. manually inspect code with similar I/O
behavior and find that behaviorally similar code can be syntac-
tically different [41]. Jiang et al. detect functionally equivalent
code fragments in C based on input and output behavior using
random testing [37]. Elva et al. also use random testing but
work at the method level [38]. GRAFTER differs from these
tools by automatically enabling test reuse via code grafting.
Differential Testing. It is difficult to define the oracle of
automatically generated tests without prior knowledge of ex-
pected outputs. Differential testing addresses this problem by
examining test outputs of comparable systems [42]–[45]. For
example, Groce et al. randomly simulate system failures and
compare their fault tolerance capability under different sys-
tems [44]. Daniel et al. automatically generate Java programs
to test refactoring engines via differential testing [45]. All
these techniques require target code to have the same interface
of input and output arguments, whereas GRAFTER is applicable
to clones without a clear interface.

Several differential testing techniques use a record-and-
replay approach to create the same test environment. For
example, Saff et al. generate unit tests from system tests by
recording interactions such as method calls and referenced
objects and by introducing wrapper classes to load serialized
interactions [46]. Instead of serializing actual objects, Orso
and Kennedy record unique object ids in a reference map
and inserts stub code to look up the reference map [47].
Elbaum et al. [48] detect heap objects reachable from a given
method using k-bound analysis [49] and serialize reachable
objects before and after the execution as the pre-state and post-
state. Diffut allows simultaneous execution and comparison
of corresponding methods between different program revi-
sions [50]. These techniques target regression testing scenarios
and assume that identifier names stay unchanged between
revisions. Unlike these techniques, GRAFTER handles name and
type variations between clones to enable differential testing.
Software Transplantation. The way GRAFTER grafts clones
for test reuse resembles software transplantation techniques.
Petke et al. use code grafting and genetic programming to
specialize miniSAT for high performance combinatorial inter-

action testing [19]. Harman et al. introduce a grow-and-graft
approach that transplants new functionality into an existing
system [20]. This approach requires developers to provide
hints regarding where to capture functionality from and how
to constrain search space. µSCALPEL transplants arbitrary
functionality from a donor system to a target system [18].
It requires organ entry and implantation points, similar to how
GRAFTER requires donor and recipient clones. µSCALPEL first
over-approximates graftable code through slicing and reduces
and adapts it through genetic programming. To guide a generic
search algorithm, µSCALPEL requires the existence of test
suites at both the origin program and the target program. In
contrast, GRAFTER does not require both clones to be already
tested by existing tests. In GRAFTER, organ extraction and
adaptation is not a search problem, rather a deterministic
process guided by syntactic resemblance and its goal is to
reveal behavior differences between clones at runtime. The
Java type-safe grafting technology presented in our paper may
have the potential to be used for automated code reuse.

Genprog transplants code from one location to another for
automated repair [17]. Such technique relies on existing tests
as oracles, and thus may not find repair solutions effectively,
when a test suite is inadequate. A recent study shows that
using human-written tests to guide automated repair leads
to higher quality patches than using automatically generated
tests [51]. By reusing human-written tests and boosting test
coverage for similar code, GRAFTER may help improve test
oracle guided repairs. Sidiroglou-Douskos et al. present Code
Phage, a system for automatically transferring input validation
checks [52]. They require an error generating input and a
normal input. Through instrumented execution, they obtain a
symbolic expression tree encoding a portable check. GRAFTER

is not limited to porting input validation checks.

VII. CONCLUSION

Up to a quarter of software systems consist of code
clones from somewhere else. However, the cost of developing
test cases is high, which makes test reuse among similar
code attractive. This paper introduces GRAFTER, the first
test transplantation and reuse approach for enabling runtime
behavior comparison between clones. To handle the use of
different types, methods, and variables in clones, GRAFTER

automatically inserts stub code to propagate data between
corresponding variables while ensuring type safety. GRAFTER’s
code transplantation succeeds in 94% of the cases, and its fine-
grained differential testing can detect more seeded faults than a
baseline static cloning bug finder. This result shows GRAFTER’s
potential to assist developers in catching subtle bugs during
copy and paste and to aid developers in comprehending the
runtime behavior of nonidentical clones.

ACKNOWLEDGMENT

Thanks to Todd Millstein and anonymous reviewers for
helpful feedback on this paper and research. This work is
supported by AFRL grant FA8750-15-2-0075, and NSF grants
CCF-1527923 and CCF-1460325.

REFERENCES

[1] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in ISESE ’04:
Proceedings of the 2004 International Symposium on Empirical Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 83–92.

[2] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
symposium on The foundations of software engineering. New York, NY,
USA: ACM, 2007, pp. 55–64.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for finding
copy-paste and related bugs in operating system code.” in OSDI, 2004,
pp. 289–302.

[4] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Reverse Engineering, 1995., Proceedings of 2nd
Working Conference on. IEEE, 1995, pp. 86–95.

[5] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey, “Cloning by accident:
an empirical study of source code cloning across software systems,” in
Empirical Software Engineering, 2005. 2005 International Symposium
on, nov. 2005, p. 10 pp.

[6] C. K. Roy and J. R. Cordy, “An empirical study of function clones in
open source software,” in Reverse Engineering, 2008. WCRE’08. 15th
Working Conference on. IEEE, 2008, pp. 81–90.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical
study of operating system errors.” in SOSP, 2001, pp. 73–88.

[8] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 2009, pp. 485–495.

[9] G. Fischer, “Cognitive view of reuse and redesign,” IEEE Software,
vol. 4, no. 4, p. 60, 1987.

[10] R. Holmes and R. J. Walker, “Supporting the investigation and planning
of pragmatic reuse tasks,” in Software Engineering, 2007. ICSE 2007.
29th International Conference on. IEEE, 2007, pp. 447–457.

[11] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive code review for
systematic changes,” in Proceedings of 37th IEEE/ACM International
Conference on Software Engineering. IEEE, 2015.

[12] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
International Conference on Automated software engineering, ser. ASE
’10. New York, NY, USA: ACM, 2010, pp. 447–456. [Online].
Available: http://doi.acm.org/10.1145/1858996.1859089

[13] B. Ray, M. Kim, S. Person, and N. Rungta, “Detecting and character-
izing semantic inconsistencies in ported code,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
Nov 2013, pp. 367–377.

[14] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in ESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engi-
neering. New York, NY, USA: ACM, 2005, pp. 187–196.

[16] R. Just, “The major mutation framework: Efficient and scalable mutation
analysis for java,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis. ACM, 2014, pp. 433–436.

[17] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 364–374.

[18] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 257–269. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771796

[19] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic
improvement and code transplants to specialise a c++ program to a
problem class,” in European Conference on Genetic Programming.
Springer, 2014, pp. 137–149.

[20] M. Harman, Y. Jia, and W. B. Langdon, “Babel pidgin: Sbse can
grow and graft entirely new functionality into a real world system,”
in International Symposium on Search Based Software Engineering.
Springer, 2014, pp. 247–252.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in ICSE ’07: Proceedings
of the 29th International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 96–105.

[22] “Levenshtein distance wikipedia,” https://en.wikipedia.org/wiki/
Levenshtein distance.

[23] “Stable marriage problem (smp) wikipedia,” https://en.wikipedia.org/
wiki/Stable marriage problem.

[24] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, “The devel-
opment of a software clone detector,” International Journal of Applied
Software Technology, 1995.

[25] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[26] W. E. Howden, “Weak mutation testing and completeness of test sets,”
IEEE Transactions on Software Engineering, no. 4, pp. 371–379, 1982.

[27] M. Woodward and K. Halewood, “From weak to strong, dead or
alive? an analysis of some mutation testing issues,” in Software Testing,
Verification, and Analysis, 1988., Proceedings of the Second Workshop
on. IEEE, 1988, pp. 152–158.

[28] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014, pp. 315–326.

[29] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?[software testing],” in Proc. of ICSE, 2005,
pp. 402–411.

[30] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing,” in
Proc. of FSE, 2014, pp. 654–665.

[31] N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: generating
program transformations from an example,” in Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011,
pp. 329–342. [Online]. Available: http://doi.acm.org/10.1145/1993498.
1993537

[32] R. Cottrell, R. J. Walker, and J. Denzinger, “Semi-automating small-
scale source code reuse via structural correspondence,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. ACM, 2008, pp. 214–225.

[33] S. Makady and R. J. Walker, “Validating pragmatic reuse tasks by
leveraging existing test suites,” Software: Practice & Experience, vol. 43,
no. 9, pp. 1039–1070, Sep. 2013.

[34] R. Holmes and R. J. Walker, “Systematizing pragmatic software reuse,”
ACM Transactions on Software Engineering and Methodology, vol. 21,
no. 4, pp. 20:1–20:44, Nov. 2012.

[35] R. Cottrell, R. J. Walker, and J. Denzinger, “Semi-automating small-scale
source code reuse via structural correspondence,” in Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2008, pp. 214–225.

[36] D. Lo, L. Jiang, A. Budi et al., “Active refinement of clone anomaly
reports,” in Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 2012, pp. 397–407.

[37] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 2009,
pp. 81–92.

[38] R. Elva and G. T. Leavens, “Semantic clone detection using method ioe-
behavior,” in Proceedings of the 6th International Workshop on Software
Clones. IEEE Press, 2012, pp. 80–81.

[39] T. Kamiya, “An execution-semantic and content-and-context-based code-
clone detection and analysis,” in Software Clones (IWSC), 2015 IEEE
9th International Workshop on. IEEE, 2015, pp. 1–7.

[40] M. A. A. Khan, K. A. Schneider, and C. K. Roy, “Active clones: Source
code clones at runtime,” Electronic Communications of the EASST,
vol. 63, 2014.

[41] E. Juergens, F. Deissenboeck, and B. Hummel, “Code similarities
beyond copy & paste,” in Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on. IEEE, 2010, pp. 78–
87.

http://doi.acm.org/10.1145/1858996.1859089
http://doi.acm.org/10.1145/2771783.2771796
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Stable_marriage_problem
https://en.wikipedia.org/wiki/Stable_marriage_problem
http://doi.acm.org/10.1145/1993498.1993537
http://doi.acm.org/10.1145/1993498.1993537

[42] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[43] R. Lämmel and W. Schulte, “Controllable combinatorial coverage
in grammar-based testing,” in Testing of Communicating Systems.
Springer, 2006, pp. 19–38.

[44] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in Software Engineering, 2007. ICSE
2007. 29th International Conference on. IEEE, 2007, pp. 621–631.

[45] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. New
York, NY, USA: ACM, 2007, pp. 185–194.

[46] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for java,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. ACM, 2005, pp. 114–
123.

[47] A. Orso and B. Kennedy, “Selective capture and replay of program
executions,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 4. ACM, 2005, pp. 1–7.

[48] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proceedings of
the 14th ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2006, pp. 253–264.

[49] V. P. Ranganath and J. Hatcliff, “Pruning interference and ready depen-
dence for slicing concurrent java programs,” in International Conference
on Compiler Construction. Springer, 2004, pp. 39–56.

[50] T. Xie, K. Taneja, S. Kale, and D. Marinov, “Towards a framework
for differential unit testing of object-oriented programs,” in Proceedings
of the Second International Workshop on Automation of Software Test.
IEEE Computer Society, 2007, p. 5.

[51] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 532–543.

[52] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applica-
tions,” in PLDI ’15: Proceedings of the 36th ACM SIGPLAN Conference
on Programming language design and implementation, vol. 50, no. 6.
ACM, 2015, pp. 43–54.

