
Poster: Grafter: Transplantation and Differential Testing for
Clones

Tianyi Zhang, Miryung Kim
University of California, Los Angeles
{tianyi.zhang,miryung}@cs.ucla.edu

ABSTRACT
Code clones are common in software. When applying similar edits
to clones, developers often find it difficult to examine the runtime
behavior of clones. The problem is exacerbated when some clones
are tested, while their counterparts are not. To reuse tests for sim-
ilar but not identical clones, Grafter transplants one clone to its
counterpart by (1) identifying variations in identifier names, types,
and method call targets, (2) resolving compilation errors caused
by such variations through code transformation, and (3) inserting
stub code to transfer input data and intermediate output values for
examination. To help developers examine behavioral differences
between clones, Grafter supports fine-grained differential testing
at both the test outcome level and the internal program state level.
Our evaluation shows that Grafter can successfully reuse tests
and detect behavioral differences. The tool is available for down-
load at http://web.cs.ucla.edu/~tianyi.zhang/grafter.html and the demo video
is available at https://youtu.be/1iqAeuM8s3U.

KEYWORDS
Code clones, software transplantation, differential testing

1 INTRODUCTION
Code reuse via copying and pasting is a common practice in soft-
ware development. Prior studies show that up to 25% of code in
modern software contains code clones—code similar to other code
fragments elsewhere. Manually adapting clones is error-prone.
Therefore, developers often rely on regression testing to check
for inconsistent or missing edits on clones [7]. However, a lack of
tests exacerbates such situation, where some clones are tested while
their counterparts are not. In fact, our study shows that, in 46% of
studied clone pairs, only one clone is tested by existing tests, but not
its counterpart [6]. No existing techniques can help programmers
reason about runtime behavior differences of clones, especially
when clones are not identical and when clones are not tested. In the
absence of test cases, developers can only resort to static analysis
techniques to examine clones [3, 7], but these techniques are limited
to finding only pre-defined types of cloning bugs such as renaming
mistakes or control-flow and data-flow inconsistencies.

This paper describes a clone transplantation and differential
testing technique called Grafter, based on our ICSE 2017 paper [6].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3195038

Given a clone pair and an existing test suite, Grafter contrasts the
runtime behavior of clones using the same test. Test reuse for clones
is challenging because clones may appear in the middle of a method
without a well-defined interface (i.e., explicit input arguments and
return type), which also makes it hard to directly adapt test for
reuse. Grafter identifies input and output parameters of a clone
to expose its de-facto interface and then grafts one clone in place
of its counterpart to exercise the grafted clone using the same test.
Grafter tracks the test status (e.g., pass or fail) as well as program
states during the test so that a user can compare these values to
examine the behavioral difference between clones.

2 APPROACH AND TOOL SUPPORT
Similar to how organ transplantation may bring incompatibility
issues between a donor and its recipient, a grafted clone may not
fit the context of the target program due to variations in clone
content. Grafter takes four steps to ensure the type safety of clone
transplantation.
Variation identification. Grafter first performs inter-procedural
analysis to identify the input and output parameters as well as
method calls referenced by each clone and its subroutines. Grafter
then matches the input and output parameters and method calls
between clones and detects the parameters and method calls that
are defined in one clone but not in the counterpart clone.
Code transplantation. To resolve compilation errors caused by
clone variations, Grafter applies five transplantation rules to han-
dle variable name variation, method call variation, variable type
variation, expression type variation, and recursion.
Data propagation. Similar to how surgeons reattach blood vessels
to ensure the blood in the recipient flows correctly to the vessels of
the transplanted organ, Grafter also needs to make sure the input
data flows correctly into the grafted clone and the output data flows
back to the same assertion check of the original test. Therefore,
Grafter inserts stub code to ensure that (1) newly declared variables
consume the same input data as their counterparts in the recipient
and (2) the updated values flow back to the same test oracle.

Figure 1 shows a grafted clone with stub code generated by
Grafter for data propagation. Lines 307-311 are stub code to prop-
agate the input data from excludes and excludeList to the corre-
sponding variables, includes and includeList, in the grafted clone.
Lines 313-314 and 323-324 are stub code to propagate the updated
value from the affected variable includeList back to excludeList

at the two exits of the grafted clone.
Differential testing. Grafter supports behavior comparison at
two levels. The test-level comparison runs the same test on two
clones and compares the test outcomes. The state-level comparison
compares the intermediate program states for affected variables
at the exit(s) of the clones. Grafter instruments code clones to

 http://web.cs.ucla.edu/~tianyi.zhang/grafter.html
https://youtu.be/1iqAeuM8s3U
https://doi.org/10.1145/3183440.3195038


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Tianyi Zhang, Miryung Kim

original clone

graft

grafted clone

Stub code to propagate the 
input data at the entry

Stub code to propagate the output 
data at the two exits

Test the grafted clone

Figure 1: Experimenting the clone transplantation in the Grafter GUI. A user can view and test the grafted clone. The grafted
clone passes the test cases colored in green but fails the test cases colored in red.

capture the updated program states at the exit(s) of clones. Grafter
uses the XStream library1 to serialize the program states of affected
variables in an XML format. Then it checks if two clones update
corresponding variables with the same values.

Grafter is implemented as a Java desktop application. Both the
tool and the evaluation dataset are publicly available.2

3 EVALUATION
We evaluated Grafter on 52 pairs of nonidentical clones from three
open-source projects: Apache Ant, Java-APNS, and Apache XML
Security. Grafter successfully grafts 49 out of 52 pairs of clones
without inducing compilation errors. Successfully reusing tests
in 94% of the cases is significant, because currently no technique
enables test reuse for nonidentical clones appearing in the middle
of a method. Grafter inserts up to 33 lines of stub code (6 on
average) to ensure type safety during grafting, indicating that code
transplantation and data propagation in Grafter are not trivial.

To assess fault detection capability, we systematically seed 361
mutants as artificial faults using the MAJOR mutation framework.3
We use a static cloning bug finder [3] as a baseline for comparison.
Grafter is more robust at detecting injected mutants than the static
approach—31% more using the test-level comparison and almost
2X more using the state-level comparison. Grafter’s state-level
comparison also narrows down the number of variables to inspect
to three variables on average. Therefore, Grafter should comple-
ment static cloning bug finders by detecting runtime behavioral
discrepancies. Our grafting technology also have the potential to
assist code reuse and repair [1, 5]. The evaluation is detailed in [6].

4 RELATEDWORK
The most related test reuse technique is Skipper. Skipper copies
associated portions of a test suite when developers reuse code [4]. It
determines relevant test cases and transforms them to fit the target
system. Skipper is built on Gilligan [2] and requires users to provide
a pragmatic reuse plan to establish the mapping of reused entities
(e.g., classes, methods) from the original system to the target system.
Skipper assumes that clones are full-feature clones at the level of
1http://x-stream.github.io/
2The tool and dataset are available at http://web.cs.ucla.edu/~tianyi.zhang/grafter.html
3http://mutation-testing.org/

methods and classes, making it difficult to apply to sub-method
level clones. The way Grafter grafts clones for test reuse resembles
existing software transplantation techniques [1].

5 SUMMARY AND FUTUREWORK
Up to a quarter of software systems consist of code clones from
somewhere else. However, the cost of developing test cases is high,
which makes test reuse among similar code attractive. This pa-
per showcases Grafter, a test transplantation and runtime behav-
ior comparison approach for clones. Our evaluation shows that
Grafter’s code transplantation succeeds in 94% of the cases and its
fine-grained differential testing feature enables users to inspect the
runtime behavior differences of clones.

To address the challenge of reusing test among sub-method
clones, Grafter transplants source code of clones rather than test
cases. However, transplanting tests makes it easier for developers
to understand adapted tests and also reduces the risk of porting a
clone to an unintended, different testing context. As future work,
we will investigate how to transplant tests directly as opposed to
transplanting a clone. Such a technique will enable automated test
adaption for clones with minimal human intervention.

REFERENCES
[1] Earl T. Barr, MarkHarman, Yue Jia, AlexandruMarginean, and Justyna Petke. 2015.

Automated Software Transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA 2015). ACM, New York, NY,
USA, 257–269. DOI:http://dx.doi.org/10.1145/2771783.2771796

[2] Reid Holmes and Robert J. Walker. 2012. Systematizing pragmatic software reuse.
ACM Transactions on Software Engineering and Methodology 21, 4 (Nov. 2012),
20:1–20:44. DOI:http://dx.doi.org/10.1145/2377656.2377657

[3] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based detection of
clone-related bugs. In Proceedings of the the 6th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering. ACM, 55–64.

[4] Soha Makady and Robert J. Walker. 2013. Validating pragmatic reuse tasks by
leveraging existing test suites. Software: Practice & Experience 43, 9 (Sept. 2013),
1039–1070. DOI:http://dx.doi.org/10.1002/spe.2134

[5] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering. IEEE, 364–374.

[6] Tianyi Zhang andMiryung Kim. 2017. Automated transplantation and differential
testing for clones. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 665–676.

[7] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. 2015. Inter-
active code review for systematic changes. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 111–122.

http://x-stream.github.io/
http://web.cs.ucla.edu/~tianyi.zhang/grafter.html
http://mutation-testing.org/
http://dx.doi.org/10.1145/2771783.2771796
http://dx.doi.org/10.1145/2377656.2377657
http://dx.doi.org/10.1002/spe.2134

