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Software is becoming increasingly pervasive and complex. During software development

and maintenance, developers often make ad hoc decisions based on local program contexts

and their own experience only, which may increase technical debt and raise unknown conse-

quences as software evolves. This dissertation explores several opportunities to guide software

development and maintenance by exploiting and visualizing the commonalities and varia-

tions among similar programs. Our hypothesis is that unveiling what has and has not been

done in other similar program contexts can help developers make more systematic decisions,

explore implementation alternatives, and reduce the risk of unknown consequences.

The inherent repetitiveness in software systems provides a solid foundation for identify-

ing and exploiting similar code. This dissertation first presents two approaches that leverage

the syntactic similarity and repetitiveness in local codebases to improve code reviews and

software testing. First, in contrast to inspecting local program edits line by line, Critics en-

ables developers to reason about related edits scattered across multiple files by summarizing

similar edits and detecting inconsistencies in similar locations. Second, Grafter boosts test

coverage by transplanting test cases between similar programs and helps developers discern

the behavioral similarity and differences between these programs via differential testing.

This dissertation further extends the idea of systematic software development from local

codebases to the open world, by exploiting the large and growing body of successful open-
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source projects on the Internet. In particular, we present three approaches that analyze a

massive number of open-source projects and provide systematic guidance based on software

reuse and adaptation patterns in the open-source community. First, ExampleCheck mines

common API usage patterns from 380K GitHub projects and contrasts online code examples

with these patterns to alert developers about potential API misuse during opportunistic code

reuse. Second, to help developers comprehensively understand the variety of API usage at

scale, Examplore aligns and super-imposes hundreds of code examples into a single code

skeleton with statistical distributions of distinct API usage features among these examples.

Finally, ExampleStack guides developers to adapt a code example to a target project by

detecting similar code fragments in GitHub and by illuminating possible variations of this

example with respect to its GitHub counterparts.

The viability and usability of these techniques are evaluated by their application to large-

scale projects as well as within-subjects user studies. First, in a user study with twelve Java

developers, Critics helps developers identify 47% more edit mistakes with 32% less time

than a line-level program diff tool. Second, Grafter transplants test cases in three open-

source projects with 94% success rate and improves the statement and branch coverage by

22% and 16% respectively. Third, ExampleCheck reduces the risk of bug propagation by

detecting API usage violations in almost one third of code examples in a popular Q&A forum,

Stack Overflow. These API usage violations can potentially lead to software anomalies such

as program crashes and resource leaks in target programs. Fourth, in a study with sixteen

Java developers, Examplore helps developers understand the distribution of API usage

patterns and answer common API usage questions accurately with concrete details. Finally,

in another study with sixteen Java developers, ExampleStack helps developers identify more

adaptation opportunities about code safety and logic customization, rather than shallow

adaptations such as variable renaming. These key findings demonstrate that discovering and

representing the commonalities and variations in similar contexts helps a developer achieve

better program comprehension, discover more design alternatives, and capture more errors

in different software development and maintenance tasks.
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CHAPTER 1

Introduction

Building and maintaining software is a costly process. Developers need to tackle the com-

plexity and uncertainty of software requirements while delivering highly functional software

products on time. As software evolves and drifts away from its original design, developers

need to spend significant maintenance effort to ensure that software quality does not degrade.

To reduce software development effort, developers tend to reuse existing software com-

ponents rather than building them from scratch. Open-source software development has

significantly enriched software reuse opportunities by making an enormous volume of source

code and libraries available online [217]. One common form of software reuse is to copy

and paste existing code fragments somewhere else to implement desired functionality [107,

133, 136, 167, 197, 208]. For instance, an analysis of 25 projects at NASA shows that 32%

of modules in these projects are reused from prior projects [208]. Another common form

of software reuse is to reuse mature and well-tested functionality exposed by library APIs.

With the ever-increasing number of external libraries and the variety of functionality they

provide, library APIs now become a fundamental building block of software systems and

play a central role in modern software development.

Although software reuse has long been advocated for increasing development productivity

and decreasing software defects [46,133,143], it is known to be undisciplined in practice, with

ad hoc decisions about which software components (e.g., code fragments, library APIs) to

reuse and how to reuse them. For instance, code reuse is often followed by specific adaptations

of copied code to fit target scenarios [101,136,140,208]. Such adaptations are typically done

manually and are thus prone to subtle edit mistakes, especially if developers do not fully

understand the original code and its context. Previous studies show that copy-and-paste
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errors are one of the major causes of operating system bugs [53,111,140].

The problem is exacerbated when developers search and reuse code from the Web [48,

81, 202, 212, 238]. Since online code snippets are written for illustration purposes only, they

are often incomplete and inadequate for production code. Some of these snippets even fol-

low insecure coding practices [73, 161] or use deprecated APIs [268]. Hence, reusing online

code snippets without proper adaptations can potentially decrease the quality of production

code and cause unknown consequences. A recent study shows that 29% of security-related

code snippets in a popular Q&A website, Stack Overflow, are insecure and have been poten-

tially reused in over one million Android apps on Google Play, which raises a big security

concern [73]. Ideally, developers would thoroughly examine the pros and cons of different

code examples and pick the one that suits a target scenario the best. However, in practice,

developers only examine a handful of these examples and return to their own code due to

limited time and attention [48, 49, 218]. Currently, there is no easy way for developers to

understand the gist of different code examples at scale.

Both forms of software reuse intentionally and unintentionally result in a large portion of

highly similar code in software systems, e.g., 29% of lines of code in JDK, 23% in Linux, which

is known as code clones [23, 36, 43, 121, 154, 199]. The existence of code clones significantly

increases maintenance effort as software evolves: developers must keep track of program

changes in similar locations, port critical patches as needed, and also avoid unintentional

inconsistencies. Ray et al. analyze software patches in the family of BSD operating systems

and find that over 10% of patches in each system are ported from other systems [187]. Such

edits are often similar but not identical due to subtle variations (e.g., variable renaming) in

their program contexts. Manually applying these edits are tedious and error-prone. Juegens

et al. inspect 1427 clone groups in five large systems and find that over half of these clones

contain inconsistent edits, among which over a quarter are introduced unintentionally and

thus lead to bugs, confirmed by developers of these systems [114].

Developers cannot easily reason about similar edits scattered across multiple files or

identify unintentional inconsistencies due to a lack of tool support. Existing code review

tools only compute line-level differences per file. As a result, developers can only inspect
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program edits line by line and focus on local contexts, without a global understanding about

missing edits or subtle inconsistencies in other similar locations [64]. We analyze 52 clone

pairs in three open-source projects and find that, in 46% of clone pairs, only one clone is

tested, while its counterpart is not. In absence of test cases, there is no easy way to examine

the behavioral consistency of these similar locations.

This dissertation seeks to reduce the risk of ad hoc decisions and avoid unintentional

inconsistencies by exploiting and visualizing the commonalities and variations among similar

programs. We believe that by unveiling what has and has not been done in similar program

contexts, developers can gain a deeper understanding about the program under investigation,

make more systematic decisions, and avoid subtle edit mistakes during software development

and maintenance.

1.1 Thesis Statement

This thesis draws inspiration from Linus’s law, which states that “given enough eyeballs, all

bugs are shallow” [190]. In other words, presenting the same code to multiple developers

can effectively detect software defects and improve code quality. However, there is a lack of

“qualified eyeballs”—developers may not have a deep understanding of the source code and

may not audit every line of code due to limited attention.

In this dissertation, we pose and explore a complementary hypothesis to Linus’s law—

presenting multiple similar programs to the same developer can enhance program compre-

hension, avoid potential inconsistencies, and identify better implementation alternatives in

software development. This hypothesis is also supported by learning theories in cognitive sci-

ence, such as analogical learning [134] and variation theory [153]: displaying and contrasting

multiple examples prompts re-evaluation of a human subject’s own beliefs and understanding

of a concept, and helps the human subject generalize the concept to new contexts.

Both the inherent repetitiveness in local codebases and the large body of open-source

projects provide many opportunities for identifying and exploiting similar programs. In par-

ticular, we focus on two kinds of similar programs—code fragments with similar syntactic
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structures and code fragments with similar API usage. To verify the overarching hypoth-

esis, we design five intelligent systems that discover and represent the commonalities and

variations among similar programs, and investigate five separate research questions in three

software development and maintenance tasks—code reviews, software testing, and oppor-

tunistic code reuse.

RQ1: Can we improve code review effectiveness by precisely identifying similar program

locations and detecting edit inconsistencies among these locations?

RQ2: Can we improve testing effectiveness by reusing test cases among similar code

fragments and examining behavioral similarities and differences among these fragments?

RQ3: Can we efficiently mine representative API usage patterns from massive code

corpora and help developers identify potential API misuse in online code examples?

RQ4: Can we help developers grasp a comprehensive view of using an API by visualizing

commonalities and variations among hundreds of API usage code examples at scale?

RQ5: Can we enable developers to identify adaptation opportunities and write complete

and robust code by displaying and contrasting similar code in GitHub?

As analogical learning [134] and variation theory [153] point out, it is necessary to dis-

play sufficient and unbiased variations among concrete examples to help human subjects

generalize a concept and understand what may vary. However, superficial differences among

those examples may in turn hinder the human capability of drawing connections between

these examples. There are similar challenges when presenting multiple similar programs to

developers. These challenges are exacerbated when analyzing and representing a massive

number of relevant code examples.

• How do we define an abstraction of concrete programs that accurately represent desired

program properties while abstracting away superficial syntactic details? In this disserta-

tion, we design different program abstractions, including interactive change templates

for summarizing similar edits, de-facto interfaces of code clones for test transplan-

tation, and structured API call sequences and code skeletons for opportunistic code

reuse, in order to flexibly express different program properties of interest (e.g., program
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structures, internal program states, API usage features).

• How do we design efficient algorithms to distill the essence of similar programs while

preserving meaningful variations to detect potential inconsistencies and recommend

implementation alternatives? We use control-flow and data-flow analysis to identify

relevant program features that we need to match and contrast, and to eliminate irrele-

vant ones to reduce both the computational and visual complexity. On top of that, we

leverage AST-based tree matching, fine-grained differential testing, data mining and

clustering techniques to identify commonalities and variations among similar programs

while accommodating different program abstractions.

• How do we intuitively represent a large number of relevant code examples to help devel-

opers easily understand the essence of similar programs and their variations at scale?

To scale to massive code corpora such as GitHub, we leverage a distributed software

mining infrastructure and a scalable clone detector to identify similar programs. We

further design efficient user-centric visualizations to illuminate commonalities and vari-

ations among the many similar programs and allow developers to drill down to concrete

details via interaction. To address the variety of program expressions in massive code

corpora, we canonicalize variable names and use a SMT solver to prove the semantic

equivalence of different expressions.

In the next two sections, we will give an overview about the five techniques, propose

sub-hypothesis for each work, and briefly explain how we verify each sub-hypothesis through

evaluation. The first two techniques exploit syntactically similar code fragments in local

codebases, while the other three techniques mine and analyze similar programs in a large

collection of open-source projects.

1.2 Leveraging Inherent Repetitiveness in Software Systems

The effectiveness of software maintenance can be significantly improved by enabling develop-

ers to reason about similar edits scattered across multiple locations. We build two techniques
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and demonstrate the benefits of leveraging syntactic similar code fragments in two common

software maintenance tasks—code reviews and software testing.

1.2.1 Interactive Code Review for Similar Program Edits

Peer code reviews require developers to manually inspect program changes to identify edit

mistakes and optimization opportunities. However, the effectiveness of code reviews is much

hindered when related program changes are scattered across multiple files [64]. Despite the

proliferation of code review tools (e.g., Phabricator,1 Gerrit,2 CodeFlow,3 Crucible,4 Review

Board5), all these tools compute line-level differences only and cannot enable developers to

reason about similar, related program edits in multiple files. A case study of a large com-

mercial software shows that 75% of program changes in a software revision can be classified

as similar but not identical edits to multiple locations [125]. As a result, developers have to

manually inspect these changes line by line to answer questions such as “what other code

locations are changed similar to this change?” and “are there any other locations that are

similar to this code but are not updated?”

We present Critics, an interactive approach for inspecting such similar edits during

peer code reviews. Given a specified change, Critics extracts the surrounding control-flow

and data-flow context of the change and creates a context-aware change template. This

approach models the change template as Abstract Syntax Tree (AST) edits with data-flow

and control-flow dependencies and allows reviewers to iteratively customize the template

by parameterizing its content and excluding certain statements. Critics then matches the

customized template against the rest of the codebase to summarize similar edits and locate

potential inconsistent or missing edits. A reviewer can iteratively refine the template based

1http://phabricator.org

2http://code.google.com/p/gerrit/

3http://visualstudioextensions.vlasovstudio.com/2012/01/06/codeflow-code-review-tool-for-visual-studio/

4https://www.atlassian.com/software/crucible

5https://www.reviewboard.org/
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on previous search results until she is satisfied with the final result. Our hypothesis is:

Hypothesis (H1). By allowing developers to interactively construct and refine an

abstract change template, we can accurately summarize similar edits in a diff patch and help

developers efficiently identify inconsistent and missing edits during code reviews.

To evaluate this hypothesis, we conduct two user studies. First, six professional develop-

ers at Salesforce.com use Critics to investigate the patches authored by their own team. All

participants find Critics helpful for inspecting system-wide changes and noticing oversight

errors. They would like Critics to be integrated into their current code review environment.

This also attests to the fact that Critics is a mature tool that scales to an industry project

and can be easily adopted by professional developers. Second, we recruit twelve participants

to review diff patches using Critics and Eclipse diff. Participants using Critics answer

questions about similar edits 47.3% more correctly with 31.9% less time during code review

tasks, in comparison to the baseline use of Eclipse diff. These results show that Critics

should improve developer productivity in inspecting similar edits during peer code reviews.

1.2.2 Automated Test Transplantation between Similar Programs

Once Critics identifies program edits that may cause inconsistencies, developers may want

to examine how these inconsistencies affect the runtime behavior in similar code locations.

For instance, in the user study of Critics, one Salesforce developer expressed the desire to

run regression testing to examine the behavioral consistency after applying similar edits to

multiple locations, but could not do so due to a lack of test cases. More broadly speaking,

developers may want to investigate the semantics change of a reused code fragment with

respect to the original code after copying and adapting it to a target program [74].

We develop a test transplantation and differential testing framework called Grafter

to help developers examine the behavioral difference between two similar programs (i.e.,

clones). Given a target code fragment and a reference code fragment, Grafter automatically

transplants the target code in place of the reference code so that the target code can be

exercised by the test of the reference code. We use def-use analysis to expose the de-
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facto interfaces of two clones and design code transformation and data propagation rules to

reconcile variations in their surrounding contexts. To detect behavioral divergence between

two similar programs, Grafter compares both their test results (i.e., test-level comparison)

and intermediate program states (i.e., state-level comparison). Our hypothesis is:

Hypothesis (H2). By exposing de-facto interfaces of two similar programs and properly

handling their variations via automated code transformation and data propagation, we can

automatically transplant test cases between these programs, boost test coverage, and help

developers discern their runtime behavior differences and potential discrepancies.

To verify our hypothesis, we apply Grafter on 52 pairs of code clones in three open-

source projects. All of these clones are code fragments inside a method without a well-defined

interface and also have variations compared to their counterparts. In 24 clone pairs, only

one clone is tested, while its counterpart is not. Grafter successfully reuses tests in 94% of

clone pairs without inducing build errors, demonstrating its automated test transplantation

capability. The statement and branch coverage of the cloned regions is improved from

50% and 67% to 72% and 83% respectively. To examine the robustness of Grafter, we

automatically insert faults using a mutation testing tool [116] and check for behavioral

consistency using Grafter. Compared with a static cloning bug finder [111], Grafter

detects 31% more mutants using the test-level comparison and 2X more using the state-level

comparison. This result indicates that Grafter should effectively complement static cloning

bug finders.

1.3 Discovering Common Practices in Open Source Communities

The large and growing body of successful open-source projects on the Internet opens up new

opportunities for identifying similar programs in the open source community. The availability

of such Big Code suggests a new, data-driven approach to develop and maintain software:

why not let developers make decisions based on common practices and possible alternatives

in the open source community? The scale of available code online is massive (e.g., millions of

open-source repositories in GitHub), which poses a significant challenge to efficiently mine,
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analyze, and visualize such massive data. We build three techniques that efficiently analyze

similar programs mined from hundreds of thousands of GitHub projects.

1.3.1 Mining Common API Usage Patterns from Massive Code Corpora

The first technique is ExampleCheck, an API usage mining framework that extracts com-

mon API patterns from 380K Java repositories on GitHub. Code-sharing websites such as

GitHub implicitly document a variety of programming idioms in open-source communities.

We focus on mining API usage patterns, since modern software systems are composed of

API calls to external libraries and frameworks. While APIs are designed to encapsulate

internal implementation details for ease of code reuse, APIs expose rich semantics and usage

constraints, which makes them challenging to use correctly in practice [63,165,195].

The intuition of ExampleCheck is that common API usage followed by many other

developers in a large number of open-source projects may represent a desirable way of using

an API. To capture rich semantics of API usage, we define a new program abstraction that

retains not only the temporal ordering of API calls, but also exception handling logic, control

structures, and guard conditions of API calls, while abstracting away superficial details such

as variable names. To handle the variety of project-specific details in a large corpus, we use

program slicing to eliminate extraneous program statements that are unrelated to the API

of interest and use an SMT solver to prove the semantic equivalence of various expressions.

Hypothesis (H3). We can learn representative API usage patterns by mining rich API

usage semantics from hundreds of thousands of open-source projects and unifying the variety

of semantically equivalent expressions using a SMT solver.

We conduct two experiments to verify this hypothesis. First, an evaluation on a state-

of-the-art API benchmark [26] shows that ExampleCheck can learn correct API usage

patterns with 80% precision and 91% recall in 10 minutes. Compared with mining from a

small curated corpus of 7K GitHub projects, mining from 380K GitHub projects improves

the precision and recall by 31% and 45% respectively, demonstrating the advantage of mining

from massive code corpora. Second, since developers often resort to online code examples
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for filling their program needs [48,202,238], we further demonstrate the usefulness of Exam-

pleCheck by checking for API usage violations in a popular Q&A forum, Stack Overflow.

A large-scale analysis of 220K SO posts shows that 31% of these posts contain potential API

misuse that could produce unexpected behavior such as program crashes and resource leaks.

ExampleCheck can effectively identify valid API misuse with 72% precision and prevent

bug propagation when reusing code examples from Stack Overflow.

1.3.2 Visualizing Common and Uncommon API Usage at Scale

Though ExampleCheck considers frequent API usage patterns in a large corpus as correct

API usage, some infrequent API usage may still be semantically correct in certain scenarios.

Therefore, it is valuable for developers to explore different API usage in a diverse set of usage

scenarios. However, since there is often a large number of relevant code examples on the

Internet, it is prohibitively time consuming for developers to understand the commonalities

and variations among them, while being able to drill down to concrete details.

We design an interactive visualization system called Examplore to help developers ex-

plore hundreds of thousands of code examples simultaneously. The key enabler of this visu-

alization is to define an abstract API usage skeleton that summarizes a variety of API usage

features, including initializations, enclosing control structures, guard conditions, and other

method calls before and after invoking the given API method, etc. Examplore aligns and

super-imposes hundreds of code examples into such a skeleton and displays the statistical

distribution of different API usage features among these examples. Developers can select

desired API usage features in the skeleton and drill down to concrete code examples with

selected features.

Hypothesis (H4). By visualizing distinct API usage features along with their statistical

distributions in an abstract API usage skeleton, developers can grasp a comprehensive view

of various API usage scenarios in a large collection of relevant code examples at scale.

To verify this hypothesis, we recruit sixteen Java developers and ask them to learn new

APIs by either searching relevant code examples, tutorials, forum posts online, or exploring
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a hundred relevant code examples mined from GitHub using Examplore. We designed a

set of API usage questions to assess how much API usage knowledge participants acquire

in each condition. Participants using Examplore answer questions about API usage more

accurately and comprehensively, while participants using the baseline web search often an-

swer questions just based on one example they find or by guessing. Examplore also helps a

user explore how other developers have used an unfamiliar API and increases her confidence

about correctly using an API in her own program context. These results indicate that Ex-

amplore complements existing online resources and tools by providing a bird’s eye view of

common and uncommon ways of using an API in a developer community.

1.3.3 Adapting Code Examples with Similar GitHub Counterparts

The API misuse study in Stack Overflow implies that online code examples are often incom-

plete and inadequate for developers’ local program contexts. Adaptation of these examples

is necessary to integrate them to production code. As a consequence, the process of adapting

online code examples is done over and over again, by multiple developers independently.

To draw a deeper understanding about how developers adapt online code examples, we

first perform a large-scale empirical study about the nature and extent of adaptations and

variations of SO code snippets. We construct a comprehensive dataset linking SO code

snippets to their GitHub counterparts based on clone detection, time stamp analysis, and

explicit URL references. We then qualitatively inspect 400 SO examples and their GitHub

counterparts and develop a taxonomy of 24 adaptation types. Using this taxonomy, we build

an automated adaptation analysis technique on top of GumTree to classify the entire dataset

into these types. Our quantitative analysis shows that the same type of adaptations and

variations appears repetitively among different GitHub clones of the same SO example, and

variation patterns resemble adaptation patterns.

Based on insights of the quantitative analysis, we build a Chrome extension called Ex-

ampleStack that guides developers to adapt and repair online code examples. Given a SO

code example, ExampleStack detects similar code fragments in 50K high-quality GitHub
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projects and lifts an adaptation-aware template based on the commonalities and variations

between the SO example and its GitHub counterparts. The lifted template highlights which

parts of the SO example remain constant and illuminates the hot spots where most changes

occur.

Hypothesis (H5). Displaying commonalities and variations in similar GitHub counter-

parts of a Stack Overflow code example can help developers understand how to adapt the

example differently and avoid common pitfalls during code reuse.

To verify this hypothesis, we conduct a within-subjects user study with sixteen Java

developers and ask each developer to perform two code reuse tasks with and without Ex-

ampleStack respectively. The result shows that by seeing commonalities and variations in

similar GitHub counterparts of a code example, participants focus more on code safety and

logic customization during code reuse, resulting in more complete and robust code. By

contrast, participants in the control group make more shallow adaptations such as variable

renaming. In a post survey, participants report that ExampleStack increases their confi-

dence about the given SO example, and helps them grasp a more comprehensive view about

how to reuse the example differently and avoid common pitfalls.

1.4 Contributions

This dissertation makes the following contributions.

• We proposed the idea of systematic software development and maintenance by dis-

covering and representing commonalities and variations among similar programs. We

provided tool support for code reviews, software testing, and opportunistic code reuse,

and demonstrated the applicability and usefulness of these tools through quantitative

experiments and user studies.

• We pioneered the research direction of applying sophisticated symbolic reasoning and

visualization to massive code copora at scale. We built a system that performs pro-

gram slicing and SMT-based semantic equivalence checking in hundreds of thousands
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of GitHub projects, and also designed user-centric interfaces for visualizing a large

collection of relevant code examples mined from massive code corpora.

• We constructed two comprehensive datasets and conducted two large-scale studies that

deepened the understanding about how prevalent API usage violations occur in online

code examples and how developers may adapt online code examples in practice. These

studies further motivated the design of two Chrome extensions. We released these

datasets and tools to support the exploration of alternative tool designs and other

related research in the community.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 describes related work on code

clones, opportunistic code reuse, API usage mining and visualization. Chapter 3 presents the

interactive code review technique for similar program edits. Chapters 4 presents the auto-

mated test transplantation and differential testing framework for similar programs. Chapter

5 presents the API usage mining and API misuse detection framework and the subsequent

API misuse study on Stack Overflow. Chapter 6 presents the interactive visualization sys-

tem. Chapter 7 presents the empirical study of common adaptation and variation patterns

of online code examples and the tool support for guiding the adaptation of a code example

by visualizing commonalities and variations in its GitHub counterpart. Chapter 8 concludes

this dissertation and outlines avenues of future work.
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CHAPTER 2

Related Work

This chapter discusses previous work related to the contributions of this dissertation. Sec-

tion 2.1 gives an overview about the literature of code cloning, including empirical stud-

ies about the presence and evolution of code clones and existing techniques for detecting,

updating, and refactoring code clones. Section 2.2 discusses about empirical studies of

opportunistic code reuse and tool support for searching relevant code snippets and integrat-

ing them to target programs. Section 2.3 discusses about related work in mining software

repositories, with a particular focus on API usage mining and visualization. Section 2.4 elab-

orates state-of-the-art interface design for exploring large collections of concrete examples

in both the software engineering (SE) and human-computer interaction (HCI) communities.

Sections 2.5, 2.6, and 2.7 briefly discuss related work in modern code reviews, differential

testing, and software transplantation respectively.

2.1 Software Repetitiveness and Code Clones

2.1.1 Empirical Studies of the Presence and Evolution of Code Clones

Code clones are common in software systems, which provides a solid foundation for identify-

ing and exploiting similar programs in this dissertation [23, 36, 43, 121, 154, 199]. Kamiya et

al. conducted two case studies in JDK and Linux using a token-based clone detector [121].

They found that 29% of lines of code in JDK and 23% in Linux contained code clones. Roy

and Cordy analyzed function clones in ten C projects and seven Java projects [199]. They

found that on average 15% of the C files and 46% of the Java files contained exact function

clones. Java had a higher percentage of clones due to a large number of accessor methods in
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Java programs that are not present in C.

In addition to code duplication in individual codebases, cross-project clones are also per-

vasive in the large body of open-source projects [80, 84, 146, 260]. Lopes et al. analyzed

file-level duplication in millions of non-forked GitHub projects [146]. Given such massive

code corpora, they found that a staggering number of of source files (70%) in GitHub con-

tained clones of other files somewhere else. Gabel and Su studied the uniqueness of software

by analyzing code clones across a large collection of 6,000 SourceForge projects at any gran-

ularity rather than just file-level duplication [80]. They found a large portion of small-scale

syntactic redundancy at levels of one to seven lines of source code, indicating a general lack

of uniqueness in software systems at a fine granularity. These results imply a high proba-

bility of identifying similar programs at different granularities from the enormous volume of

shared code in the open source community.

The existence of code clones significantly increases software maintenance effort. For in-

stance, when applying bug fixes or performing code refactoring to one location, developers

must apply similar edits to other similar locations consistently. Several studies investigate

the evolution of code clones by tracing the change histories of code clones [31,126,132,228].

Kim et al. presented an empirical study of code clone genealogies in two Java open-source

projects [126]. The authors found that 36% to 38% code clones were changed consistently,

thus requiring developers to apply similar edits repetitively to multiple locations. The au-

thors also found that, though many clones were volatile—disappearing after an average of

eight commits, those long-lived clones cannot be easily removed using standard refactoring

methods. Thummalapenta et al. investigated the change propagation patterns among code

clones in four Java and C systems [228]. They found that the majority of clones were ei-

ther changed consistently or diverged intentionally, while about 16% of clones involved late

change propagation—missing edits were applied repetitively in later commits. Tool support

for effectively managing and maintaining is much needed to reduce manual effort of applying

similar edits and ensure the evolution consistency of code clones. In the next section, we will

elaborate existing techniques for detecting, inspecting, editing, and refactoring code clones

and discuss how Critics and Grafter contribute to this line of research.
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2.1.2 Existing Tool Support for Maintaining Code Clones

2.1.2.1 Clone Detection

As surveyed in [198], a variety of clone detection techniques [2,36,43,70,78,109,113,121,128,

130,131,139,141,144,149,151,154,200] have been proposed and evaluated since the early 90s.

Based on the level of analysis applied to the source code, these techniques can be roughly

classified to four main categories—text based, token based, syntax based, and semantics based.

Text-based approaches treat source code as text and directly compares the text similar-

ity between two programs with little source code normalization [2, 113, 139, 149, 151, 200].

For instance, Johnson proposed n approach that applies a string hashing function to code

fragments and then identify those code fragments with the same hash values as clones [113].

Though text-based clone detectors is language-agnostic, they cannot detect programs with

similar code structures and functionality while varying a lot in identifiers and code comments.

Token-based approaches utilize a lexical analyzer to tokenize source code and parameter-

ize identifier tokens such as variable names and constant values, in order to detect similar

programs with small variations in identifiers [36, 121, 141, 206, 246]. CCFinder is a well-

known token-based clone detector [121]. In addition to standard identifier parameterization,

CCFinder also leverages a set of transformation rules (e.g., removing initialization lists) as a

preprocessing step to eliminate superficial syntactic details in source code, before performing

a token-by-token comparison.

Syntax-based approaches parse source code to abstract syntax trees (ASTs) and then

identify similar subtrees using tree matching algorithms [43, 70, 130] or using metric-based

clustering algorithms [59, 109]. For instance, Deckard encodes syntax trees to numerical

vectors and clusters these vectors based on their euclidean distance [109]. The clustering

algorithm in Deckard is optimized by locality sensitive hashing (LSH) [58], which generates

the same hash value for vectors within a given euclidean distance. In Chapter 4, Grafter

leverages Deckard to identify similar programs in software codebases but can be easily ex-

tended to support a new clone detector by writing a simple parser to interpret the clone

detection result.
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Semantics-based approaches use static program analysis to identify more precise semantic

information in source code than simply comparing syntactic similarity [78,128,131,144]. For

instance, Gabel et al. proposed to represent programs as program dependency graphs (PDGs)

to model the control flow and data flow in a program and extended the vector generation

phase of Deckard using PDGs rather than ASTs to detect semantic clones.

Recently, several new techniques have been proposed to detect clones in ultra-large code

corpora [206] or to detect near-miss clones that are previously difficult to find [205, 246].

SourcererCC (SCC) is a token-based clone detector that scales to hundreds of thousands

of open-source projects. SCC achieves this by selecting and indexing a subset of tokens in

a code block (i.e., partial indexing) and builds an inverted index mapping between tokens

and code blocks. To detect clone candidates, SCC queries the inverted index mapping and

exploits the ordering of tokens to filter plausible clones. In Chapter 7, ExampleStack

leverages SourcererCC [206] to scale the clone detection between 312K Stack Overflow posts

and 51K high-quality GitHub repositories with at least five stars. CCAligner aims to detect

cloned code with many inserted or deleted statements in the middle (i.e., large-gaped clones).

It applies a sliding window to match inner blocks between two target code fragments and

uses asymmetric similarity coefficient to measure the overall similarity of all matched code

blocks in these two fragments [246]. Oreo detects near-miss clones with less than 70% token-

level similarity by extracting action-related metrics (e.g., array accesses, function calls) and

training a deep learning model that predicates clones based on these metrics [205].

2.1.2.2 Clone Tracking and Inconsistency Detection

During the evolution of code clones, inconsistent edits may occur, causing software bugs. For

instance, Juegens et al. manually inspected 1427 clone groups in five large systems and found

that over half of these clones contained inconsistent edits, among which over a quarter were

introduced unintentionally and were confirmed as bugs by developers of these systems [114].

Many techniques have been proposed to track program edits on code clones and auto-

matically detect potential inconsistencies [37, 62, 140, 145, 188]. Duala-Ekoko and Robillard
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proposed a technique for tracking clones in evolving software, where their technique noti-

fies developers of modifications to clone regions and supports the simultaneous editing of

clone regions [62]. Bakota et al. presented an approach that matches clone instances across

program versions using supervised machine learning and detects four kinds of clone smells—

vanished clone instances, newly introduced clones, clone instances that are moved between

clone groups, and late propagations of clone edits [37]. CP-Miner detects copy-pasted code

via frequent subsequence mining and then matches identifiers (e.g., variable names, function

calls) to identify renaming inconsistencies [140]. Jiang et al. presented an approach that

detects three types of cloning inconsistencies—renaming mistakes, control-flow construct in-

consistencies, and conditional predicate inconsistencies [111]. In an empirical study of soft-

ware patches in the family of BSD operating systems (e.g., FreeBSD, OpenBSD, NetBSD),

Ray et al. found that over 10% of the patches in each system were ported from other sys-

tems [187]. The authors further categorized four common types of inconsistencies in these

ported patches and proposed an automated approach to detect the control-flow and data-flow

inconsistencies in the surrounding context of ported patches [188].

These techniques often report a lot of potential clone inconsistencies that are not real

bugs, which is time-consuming for manual examination. To reduce the false positive rate,

Lo et al. proposed an interactive approach that only shows a subset of detected clone incon-

sistencies each time and incorporates user feedback to incrementally refine the inconsistency

report [145]. In Chapter 3, we present an interactive approach called Critics that allows

a developer to actively express a desired program edit as an abstract change template and

continuously refine the template based on identified missing or inconsistent edits in other

similar locations. Furthermore, all existing inconsistency detection techniques only leverage

static analysis to detect potential inconsistencies between clones. In Chapter 4, we present

the first dynamic approach called Grafter that automatically transplants code clones to

reuse test and examines the behavior consistency between clones via differential testing.

Origin analysis traces the merging and splitting of code fragments across versions by

matching their similarity in terms of variable names, expressions, and function calls [87, 88,

237,270]. The goal of origin analysis is to reconstruct the evolution history of code fragments
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and help developers understand structural changes during evolution. It does not monitor

similar edits or detect inconsistencies in a group of code clones.

2.1.2.3 Automating Systematic Edits

Due to subtle variations in the program contexts of similar code locations, edits on these

locations are often similar but not identical, which is coined as systematic edits by Kim and

Notkin [125]. Kim and Notkin then proposed an automated approach called LSDiff that

automatically infers and summarizes such similar but not identical edits as logic rules. In a

case study of a large commercial software, they found that 75% of structural changes in a

software revision were systematic edits.

Applying such similar but not identical edits is tedious and error-prone. Several tech-

niques are proposed to automatically apply such similar edits [29, 159, 160, 169, 196]. An-

dersen et al. presented a generic patch inference algorithm, which takes a set of example

program transformations and generates a generic patch to automate similar edits to mul-

tiple locations [29]. LibSync automatically updates the usage of an API by learning API

usage adaptation patterns based on updates in other callsites of the same API [169]. SYDIT

learns an abstract change template by generalizing all identifiers in a given program change

and automatically applies similar changes by concretizing the abstract template to other

similar locations [159]. LASE extends SYDIT by only generalizing the variations among

multiple similar program changes [160]. However, these approaches do not provide users the

flexibility to interactively customize change templates. In the comparison between Critics

and LASE (Section 3.6.3), we show that the interactive feature of Critics allows users to

achieve comparable or higher accuracy within a few iterations.

2.1.2.4 Clone Removal Refactoring

To eliminate the side effects caused by code clones, a number of techniques are proposed

to automatically remove code clones [38, 104, 115, 158, 225, 236]. Some of them refactor

clones using either the Strategy design pattern or the Form Template Method design pat-
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tern [38, 104, 115, 225]. Hence, these techniques are only applicable to clones in a restricted

scope. Meng et al. extended prior work by introducing more transformation rules to handle

clone variations in types, methods, variables, and expressions [158]. Given a set of system-

atic edits (i.e., similar edits to multiple locations), their technique extracts the surrounding

common parts of these edits and parameterizes their variations. Tsantalis et al. presented

another clone removal approach that leverages lambda expressions introduced in Java 8 to

factorize code clones [236]. Compared with Meng et al.’s technique, this approach takes

as input the results of clone detection tools, rather than relying on systematic edits. Con-

sidering the difficulty of clone removal tasks, both techniques achieve promising results in

their evaluations, with 58% success rate of clone removal in their benchmarks. However,

both techniques do not consider other factors such as readability and maintainability of the

refactored code after clone removal.

On the other hand, several empirical studies find that removing clones is not necessary

nor beneficial [32,86,122,124]. Based on case studies of Linux kernel and Apache Web server,

Kapser and Godfrey presented eight cloning patterns, describing the underlying motivation,

benefits, and issues of each cloning pattern [122]. They argued that code duplication seemed

to be a reasonable and even beneficial choice in many situations. We share a similar thought

that the existence of code clones is not necessarily harmful, as long as there is effective

tool support for managing and maintaining code clones. In Chapter 3 and Chapter 4, we

demonstrate that designing tools to help developers understand the syntactic and behavioral

similarity and differences between code clones can enhance developers’ understanding of

clones and efficiently identify potential inconsistencies in code reviews and testing.

2.2 Opportunistic Code Reuse

2.2.1 Code Reuse from Local Codebases

One major cause of software repetitiveness and code cloning is copying, pasting, and adapting

existing code fragments in developers’ own codebases. An in situ observational study showed
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that 85% of the new classes developed in the one-week observation period were copied and

pasted from existing code, followed by heavy modification [136]. Selby analyzed 25 projects at

NASA and found that 32% of modules in these projects were reused from prior projects [208],

among which 47% required modification from their original form. In a survey with 12

developers in the industry, all developers said that they often copied and pasted code (usually

4 to 50 lines of code) when prototyping new features or incorporating functionality from

existing projects [101]. As developers repeatedly explained, the main motivation behind this

was to save time—“reusing code is quicker and easier than starting from scratch”—and to

increase the reliability of their code, since developers wanted to “leveraging existing testing”.

On the other hand, some clones are created unintentionally or independently by different

developers. Al-Ekram et al. analyzed code clones across different projects and found that a

large number of cross-project clones were resulted from similar usage of APIs such as GUI

toolkits and libraries [23]. Though unintentional code cloning does not induce any causal

relationship between similar programs, we find it is still valuable to present similar yet inde-

pendent implementations to developers. For instance, in the user study of ExampleStack

(Chapter 7), displaying similar GitHub clones of a Stack Overflow example reminded de-

velopers of critical safety checks and logic customization opportunities they may otherwise

miss during opportunistic code reuse, even though some of those clones may come from

independent but similar implementations.

2.2.2 Code Reuse from the Web

As the Internet accumulates an enormous volume of source code, the code reuse workflow

has gradually shifted from local codebases towards the Internet [39, 48, 81, 99, 164, 202, 212,

238, 255]. Developers often search code snippets shared in programming websites such as

Stack Overflow to fulfill their own programming needs, e.g., learning new APIs, locating

code snippets with desired functionality. Sim et al. conducted a lab study with 36 graduate

students to evaluate the effectiveness of different code retrieval techniques [212]. In the

demographic survey, 50% of participants reported to search code online frequently and 39%
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reported to search occasionally. Sadowski et al. analyzed the search logs generated by 27

Google developers over two weeks [202]. They found that developers issued an average of

12 code search queries to the Web per weekday, while back to the 90s, developers mostly

searched within their own codebases using grep or other built-in search tools in editors [213].

Brandt et al. conducted a lab study to understand how developers search and leverage

online resources during software development [48]. The authors recruited 20 students at

Stanford and asked them to prototype a Web chat room application. The authors observed

that all participants searched and browsed external resources on the Web extensively. Partic-

ipants typically started with searching for relevant tutorials and then used the code examples

in these tutorials as the scaffold of their own implementation. Baltes et al. surveyed Stack

Overflow users to study the usage and attribution of code snippets in Stack Overflow [39].

Among 122 respondents, 79% said they copied code from Stack Overflow no more than a

month ago, and 39% not more than a week ago. However, half of them (49%) just copied

the code without attributing the original SO post, while the others added a source code

comment with a link to the original SO post. Wu et al. analyzed 289 GitHub files that

contained a Stack Overflow link in code comments, and found that 44% of GitHub files

involved modification varied from simple refactoring to complete reimplementation. They

further surveyed Stack Overflow users to investigate the barriers of reusing code from Stack

Overflow. Among 453 respondents, 65% explained that the reused code should be adapted

accordingly to fit the target context, 44% found it difficult to understand some code snippets

in Stack Overflow, and 32% complained about the low code quality in Stack Overflow.

Previous studies have investigated the quality of online code snippets from different

perspectives, including compilability [223, 259], comprehensiveness [235], obsolete API us-

age [268], and security [73, 161]. Subramanian and Holmes analyzed 39K Android code

snippets in Stack Overflow and found that 83% of them were incomplete snippets without

class or method declarations, which cannot be accepted by standard compilers [223]. Yang

et al. performed a more comprehensive analysis of 3M Stack Overflow code snippets in dif-

ferent programming languages [259]. They found that Java and C# had the least complete

code snippets in Stack Overflow, with only 4% and 16% parsable and 1% and 0.1% runnable
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in each language. Treude and Robillard conducted a survey to investigate comprehension

difficulty of code examples in Stack Overflow [235]. The responses from 321 GitHub users

indicated that less than half of the SO examples were self-explanatory and the main issues

included incomplete code, code quality, missing rationale, code organization, clutter, naming

issues, and missing domain information. Zhou et al. found that 86 of 200 accepted posts

on Stack Overflow used deprecated APIs but only 3 of them were reported by other pro-

grammers [268]. Fischer et al. investigated security-related code snippets in Stack Overflow

and found that 29% of them were insecure [73]. They further applied clone detection to

check for similar code between Stack Overflow and Android applications on Google Play and

found that these insecure code snippets may have been copied to over one million Android

applications. While our study in Chapter 7 also indicates the limitation of code snippets in

Stack Overflow, our study focuses on API usage violations that may lead to unexpected be-

havior such as program crashes and resource leaks by contrasting SO code examples against

frequent API usage mined from massive corpora. Our results strongly motivate the need of

systematically augmenting Stack Overflow and helping developers to assess code examples

of interest with quantitative evidence about how many GitHub snippets follow (or do not

follow) related API usage patterns.

Despite the wide usage of Stack Overflow, most developers are not aware of the SO

licensing terms nor attribute to the code reused from SO [28,39,255]. An et al. used a clone

detector, NiCad [200], to identify duplicated code between 399 Android applications and 2M

Android code snippets in Stack Overflow [28]. They found exact copies of SO code snippets

in 62 different Android applications, among which 60 applications did not attribute to the

original SO posts in Android. According to the survey with 122 SO users in [39], almost one

half developers admitted copying code from SO without attribution and two thirds were not

aware of the SO licensing implications. Based on these findings, when analyzing adaptation

patterns of online snippets in Chapter 7, we carefully construct a comprehensive dataset of

reused code, including both explicitly attributed SO examples and potentially reused ones

using multiple complementary methods for quality control—clone detection, time stamp

analysis, and explicit references.
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Prior work has also investigated participation barriers in online programming commu-

nities [77, 219, 240, 241]. For instance, in Stack Overflow, negative feedback and hostile

criticism can dissuade novice developers from participating in online discussions in the com-

munity [219]. Vasilescu et al. find that, compared to traditional mailing lists, Stack Overflow

tends to be a relatively “unhealthy” community, in which women disengage sooner although

their activity levels are comparable to mens [240]. To improve the engagement of Stack Over-

flow users, Ford et al. propose to pair novice programmers with experienced mentors [76].

Instead of assigning mentors based on seniority only, this thesis also suggests connecting

Stack Overflow users and GitHub developers if they write similar code or use similar APIs,

in order to enhance peer learning and assessment in online programming communities.

2.2.3 Tool Support for Searching and Integrating Code Snippets

One important activity in opportunistic code reuse is to locate a desired code fragment to

reuse. Many code search techniques have been proposed to expand code search capability

beyond keywords only, by utilizing the structural and semantic information in code exam-

ples [35,47,66,100,123,137,156,157,191,204,214,215,221,229]. StrathCona searches relevant

code examples by matching program contexts [100]. Wang et al. proposed a dependency-

based code search technique that represents source code as dependency graphs to capture

control-flow and data-flow dependencies in a program, and matches a given search query

against program dependence graphs [247]. XSnippet allows a user to search based on ob-

ject instantiation using type hierarchy information from a given example [204]. S6 uses

a combination of test cases, method signatures, and natural language descriptions to find

relevant code examples [191]. Sourcerer provides an SQL database of the source code and

metadata in 18K open-source projects, where search queries are formed as standard SQL

statements [35]. Boa is a MapReduce-like distributed software mining infrastructure that

provides AST traversal primitives over 380K GitHub repositories in Java [66]. In Chapter 5,

we leverage Boa to optimize the code search and program slicing phases of the API usage

mining framework, since Boa provides an expressive query language and a high-performance

infrastructure that scales to hundreds of thousands of projects on GitHub.
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Due to the incompleteness of online code snippets, many of them cannot be accepted by

compilers or program analysis techniques. Several techniques have been proposed to resolve

compilation errors and ambiguous dependencies in incomplete online code snippets [55,194,

227, 266]. Both ACE [194] and Baker [224] resolve ambiguous types and method calls in

online code snippets. Baker resolves types and method calls based an oracle—a pre-defined

set of known Java elements—while ACE analyzes the surrounding texts and code blocks of

a given code snippet to find “hints” to resolve types. In Chapter 5, we leverage the oracle-

based approach in Baker to parse incomplete code snippets and resolve types and method

calls when analyzing online code snippets. We choose Baker over ACE because Baker

has a higher accuracy. Deprecation Watcher [268] is a Chrome extension that detects

deprecated API usages and gives warnings on Stack Overflow. In Chapter 5, we present a

Chrome extension that proactively detects API usage violations in SO posts using common

patterns mined from 380K GitHub projects and suggests corresponding fixes to developers

when they are browsing Stack Overflow posts.

Previous support for reusing code from Stack Overflow mostly focuses on helping develop-

ers locate relevant posts or snippets from the IDE [34,178,179,253]. For example, Prompter

retrieves related SO discussions based on the program context in Eclipse [179]. SnipMatch

supports light-weight code integration by renaming variables in a SO snippet based on cor-

responding variables in a target program [253]. Code correspondence techniques [54, 101]

match code elements (e.g., variables, methods) to decide which code to copy, rename, or

delete during copying and pasting. In Chapter 7, we focus on analyzing the common adap-

tation and variations patterns of online code examples to draw a deeper understanding about

how developers adapt a code example to a target program in practice. Our insight is that,

by displaying similar code in real-world projects with their variations, developers can bet-

ter understand limitations of curated examples and recognize what other developers often

change when reusing the same example to real software systems.

On the other hand, many techniques have been proposed to utilize online code snippets

for different development activities. SISE automatically augments API documentations by

assembling sentences from relevant Stack Overflow discussions [234]. Iyer et al. used texts and

25



code snippets on Stack Overflow to train a neural network for code comment generation [106].

Chen et al. presented an automated bug detection approach by identifying code fragments

that are syntactically similar to buggy code snippets posted on Stack Overflow via clone

detection [52]. QACrashFix automatically generates patches to fix program exceptions by

searching for solutions of similar exception traces on Stack Overflow [83]. All these techniques

assume that online code snippets have high quality and can provide insights to guide the

automated approaches. However, previous studies and our own work show that online code

snippets have many quality issues that may either increase the difficulty of analyzing these

snippets due to ambiguous types and incomplete programs, or downgrade the code generated

based on these snippets due to API usage violations and security issues.

2.3 Mining and Visualizing API Usage

Mining software repositories is a well-established and active field in Software Engineering.

The essential idea is to mine the large amount of source code and metadata such as commit

logs in open-source code repositories to gain valuable information and use this information

to enhance software tools and processes. Its history dates back to the work by Zimmerman

et al. [269], which mines association rules of program changes from software version histories

and recommends code elements potentially related to a given change task. In this section,

we will focus on prior work about API usage mining, which is closely related to our work in

Chapter 5 and Chapter 6, which mines, analyzes, and visualizes API usage patterns in 380K

GitHub projects.

There is a large body of literature in mining implicit programming rules, API usage, and

temporal properties of API calls [50, 51, 92, 93, 142, 150, 163, 170, 183, 231, 244]. GrouMiner

models programs as graphs and performs frequent subgraph mining to find API usage pat-

terns [170]. Buse and Weimer proposed an API usage mining technique that models programs

as graphs and clusters these graphs using the k-medoid algorithm [50]. Gruska et al. proposed

an API usage mining technique that extracts API call sequences from concrete programs and

performs formal concept analysis [82] to identify API methods that are frequently invoked
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together [92]. Many other specification mining techniques are dedicated to inferring temporal

properties of API calls [27,69,79,180,181,248]. UP-Miner mines frequent sequence patterns

but does not retain control constructs and guard conditions in API usage patterns [244].

Several techniques [142, 163, 231] model programs as item sets and infer pairwise program-

ming rules using frequent itemset mining [90], which does not consider temporal ordering or

guard conditions of API calls.

The advent of software forges such as GitHub and BitBucket makes millions of open-

source repositories accessible to software developers and researchers. In recent years, there

is an increasing interest in mining such “Big Code” to detect software defects and vulnera-

bilities, enhance program comprehension, and enable automated software construction and

repair. The term “Big Code” is first coined by the Darpa MUSE program1, in order to ini-

tiate a new research thrust by treating code as data and applying data analytics to massive

code corpora to enhance software quality and robustness. However, such massive code cor-

pora imposes significant challenges to scale previous software mining techniques to millions

of open-source repositories. To our best knowledge, the largest code corpus used by previous

API usage mining techniques is a collection of 6,000 Linux projects [92].

In Chapter 5, we present a scalable technique called ExampleCheck that mines common

API usage patterns from 380K Java projects in GitHub, which is several orders of mag-

nitude larger than prior work. ExampleCheck mines not only API call ordering but also

guard conditions using predicate mining. Ramanathan et al. [184] and Nguyen et al. [168]

are the only two predicate mining techniques. Ramanathan et al. applied inter-procedure

data-flow analysis to collect all predicates related to a call site and then used frequent

itemset mining to find common predicates. Ramanathan et al. only mined a single project

and did not handle semantically equivalent predicates in different forms. Nguyen et al. im-

proved upon Ramanathan et al. by normalizing predicates using several rewriting heuristics.

ExampleCheck differs from these two techniques by formalizing the predicate equivalence

problem as a satisfiability problem and leveraging a SMT solver to group logically equivalent

1http://science.dodlive.mil/2014/03/21/darpas-muse-mining-big-code/
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predicates during predicate mining.

Only a few API usage mining techniques provide support for visualizing the results of

mined API usage patterns but they do not focus on how to effectively visualize concrete sup-

porting examples together. For example, Buse and Weimer synthesize human-readable API

usage code based on mined graph patterns [50]. GrouMiner applies a similar graph-based

mining algorithm and un-parses mined graph patterns to generate corresponding source

code [170]. UP-Miner mines frequent method call sequences and visualizes call sequence

patterns as probability graphs [244]. All these techniques visualize individual API usage

patterns separately without enabling developers to reason about the similarity and differ-

ences among different API usage patterns. Furthermore, none of these techniques provides

traceability to concrete examples that illustrate these patterns. Instead, Examplore (Chap-

ter 6) visualizes a variety of API usage features along with their statistical distributions in a

single synthetic code skeleton, and provides a navigation model to allow users to understand

the correspondence between abstract API usage features and concrete examples. Exam-

pleStack (Chapter 7) further extends Examplore by automatically lifting a template from

arbitrary similar code fragments, not limited to those with similar API usage nor requiring

a pre-defined code skeleton. We achieve this by designing a novel template construction

approach that retains the unchanged part among multiple similar programs, clusters the

program differences in the same locations, and abstracts away changed locations with holes.

2.4 Interfaces for Exploring Collections of Concrete Examples

2.4.1 Exploring and Visualizing Multiple Code Instances

Despite the growing interest of mining a large collection of open-source repositories, there is

no easy way for a user to understand the commonalities and variances among a large number

of relevant code examples. Most code search and mining techniques present multiple code

instances in a flat structure (e.g., a ranked list) without providing an efficient way of exploring

these code instances. Program differencing techniques align two programs and highlights
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their differences in a side-by-side view. However, these techniques can only compare a pair

of programs at a time. If there are more than two programs under investigation, developers

have to investigate what remains constant and what varies between every two programs, and

mentally cluster the differences of every two programs to understand the commonalities and

variations among all programs.

Lin et al. proposed a novel program differencing tool called MCIDiff that aligns multiple

similar code fragments (i.e., instances of code clones) horizontally in a row and highlights

their variances. However, horizontally aligning hundreds of relevant code examples mined

from a large code corpus can significantly increase the visual complexity. Developers still

have to scroll back and forth between different examples in MCIDiff and mentally interpret

what has been changed and what remains constant among these examples.

OverCode represents how hundreds or thousands of students independently implement

the same function in massive programming classes [85]. Given a large number of raw func-

tions written by students, OverCode canonicalizes variable names and reformats the raw

implementation to a standardized format. OverCode then clusters similar function imple-

mentations using both static analysis and dynamic analysis and displays the variations among

different clusters along with the number of corresponding raw functions in the corpus. Over-

Code does not directly carry over to code examples collected outside a massive classroom,

where developers are not all implementing the exact same function.

There are two major motivations for visualizing a large collection of code examples for

API usage (Chapter 6). First, developers often express the desire for exploring multiple code

examples for API learning. Buse and Weimer conducted a survey with 150 industrial devel-

opers and found that “the best documentation must show all different ways to use something,

so it’s helpful in all cases” [252]. The respondents in another survey also expressed a desire

to examine multiple examples to investigate alternative uses [195]. This is also confirmed

by several quantitative analysis of search logs. Hoffmann et al. analyzed the search logs on

MSN and found that 34% of the search queries had a goal of finding and learning APIs [99].

Of those, 18% include the word “sample” or “example” in the query. Montandon et al. in-

strumented the Android API documentation platform and found that Android developers
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often searched for concrete code examples in Android documentations [164].

Second, as discussed in Section 2.2.2, individual code examples may suffer from insecure

coding practices [73,161], unchecked obsolete usage [268], and comprehension difficulty [235].

Therefore, it is beneficial to get a comprehensive view of API usage and understand the pros

and cons of different code examples. One might expect developers to perform thorough inves-

tigation on multiple code examples to learn an unfamiliar API. In practice, however, develop-

ers often examine only a few search results due to limited time and attention. In [48], Brandt

et al. observed that participants typically clicked several search results and then judged their

quality by rapidly skimming. Duala-Ekoko and Robillard observed that participants often

backtracked when browsing search results, due to irrelevant or uninteresting information in

search results [63]. More specifically, Starke et al. showed that developers rarely looked be-

yond five examples when searching for code examples to complete a programming task [218].

These results indicate that the code exploration process is often limited to a few search re-

sults, leaving a large portion of foraged information unexplored. To guide users to explore a

large number of code examples simultaneously, Examplore constructs a code skeleton with

statistical distributions of individual API usage features as a navigation model.

2.4.2 Exploring and Visualizing Other Complex Objects

The HCI community has a broad interest of visualizing large collections of objects such as

Photoshop tutorials and text documents, not just limited to source code.

Both Sifter [174] and Delta [129] operate on sequences of image manipulation commands

in Photoshop. Pavel et al. created an interface for browsing the variation and consistency

across large collections of Photoshop tutorials, focusing in particular on sequences of invoked

Photoshop commands [174]. Kong et al. addressed a similar problem by presenting different

linked views, including lists, side-by-side comparisons between a few sequences, and clus-

ters [129]. Unlike code or text, images can be easily consumed at a glance, so these systems

use thumbnails to make a long reading comparison task easy.

Both WordTree [249] and WordSeer [209] operate on text, while Examplore attempts
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to translate similar insights to code. WordTree uses alignment, counts, deduplication, and

dependence to visualize the N+1-word sequences containing the N-word long sequences si-

multaneously for a user-chosen root word. Similar to WordTree, Examplore captures de-

pendencies across the multi-dimensional space of code examples. For example, when a user

selects a particular feature option in the code skeleton, Examplore dynamically updates

the counts of remaining feature options so that they are conditioned on the selected option,

revealing the statistical distribution of co-occurring feature options. WordSeer infers the

grammatical structure of natural language documents in a given corpus. It leverages the

inferred grammatical structure to power grammatical search, where users can query for, e.g.,

who (or what) is described as “cruel” in North American Antebellum slave narratives? The

result is a ranked list, with counts, of the different extracted entities described in one or

more narratives as “cruel”; we adapt this display in Examplore to show the distribution of

options for an API usage feature such as the guard condition of an API call.

2.5 Modern Code Reviews and Program Change Comprehension

Rigby et al. investigated code review practices in open source development and found that

developers could understand small, logical, coherent units of code changes better rather

than large, unrelated changes [193]. In another study, Rigby et al. found general principles

of code review practices and elaborated the benefits of code reviews [192]. Bacchelli and

Bird studied modern code review practices and found that a key challenge of modern code

review is a lacking tool support for program change comprehension [33]. Tao et al. studied

the challenges of comprehending program changes during code reviews and concluded that

code review tools must support the capability to divide a large chunk of code changes into

sub logical groupings and to filter non-essential changes [226]. These findings motivate the

design of Critics. Barnett et al. developed a static analysis technique to help developers to

understand program changes during code reviews [40]. Their technique decomposes a large

diff patch to small program changes and cluster relevant changes using dependency analysis.

While our work in Chapter 3 shares the same goal of assisting program change comprehension
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in code reviews, we focus on summarizing similar changes via interactive change template

construction and identifying unintentional edit inconsistencies in a diff patch.

RefFinder summarizes refactoring edits in a diff patch as logic facts using using pre-

defined refactoring rules [182]. LSdiff infers the latent patterns of similar edits and summa-

rizes them as logic rules [125]. However, LSdiff supports only coarse-grained analysis at the

level of method calls and field accesses. Furthermore, LSDiff does not leverage any human

input to guide the inference process and thus often discovers a large amount of rules in an

inefficient top-down manner, while discarding most of them in a post-processing step. In

contrast, Critics allows a user to interactively refine an abstract diff template to be used.

2.6 Differential Testing

The cost of manually constructing test cases is high, which makes automated test generation

very appealing. However, it is difficult to define the oracle of automatically generated tests

without prior knowledge of expected outputs, which is known as the test oracle problem [42].

Differential testing addresses this oracle problem by examining test outputs of comparable

systems [57, 91, 135, 155]. For example, Groce et al. randomly simulated different kinds of

system failures and compared the fault tolerance capability of a Flash file system at JPL

with heavily tested and widely available file systems, including Solaris file system, Cygwin,

and EXT3 and tmpfs on Linux, as reference implementations [91]. Daniel et al. developed

a differential testing technique that automatically generates Java programs to test code

refactoring engines and identifies inconsistencies among the output programs generated by

different refactoring engines [57]. All these techniques require similar programs under test to

have the same interface for ease of comparison, whereas the real-world code clones often are

sub-method code fragments without a clear interface. In Chapter 4, we explore the feasibility

of automatically transplanting test cases between syntactically similar code fragments by

using def-use analysis to expose their de-facto interfaces clones.

Several differential testing techniques use a record-and-replay approach to execute dif-

ferent programs under the same test environment. For example, Saff et al. presented an
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automated approach that generates unit tests from system tests by recording interactions

such as method calls and referenced objects and by loading serialized interactions to re-

play the recorded execution [203]. Instead of serializing actual objects, Orso and Kennedy

extended Saff et al. by only recording unique object ids in a reference map and inserting

stub code to look up the reference map [171]. Elbaum et al. presented a unit test gen-

eration technique that detects heap objects reachable from a given method using k-bound

analysis [185] and serializes reachable objects before and after the execution as the pre-state

and post-state [68]. Diffut allows simultaneous execution and comparison of corresponding

methods between different program revisions [256]. These techniques target regression test-

ing scenarios and assume that identifier names stay unchanged between revisions. Unlike

these techniques, Grafter handles name and type variations between code clones to enable

differential testing.

2.7 Software Transplantation

In Chapter 4, the way Grafter grafts clones for test reuse resembles software transplantation

techniques. Petke et al. used code grafting and genetic programming to specialize miniSAT

for high performance combinatorial interaction testing [176]. Harman et al. introduced a

grow-and-graft approach that transplants new functionality into an existing system [96]. This

approach requires developers to provide hints regarding where to capture functionality from

and how to constrain search space. µSCALPEL transplants arbitrary functionality from a

donor system to a target system [41]. It requires organ entry and implantation points, similar

to how Grafter requires donor and recipient clones. µSCALPEL first over-approximates

graftable code through slicing and reduces and adapts it through genetic programming. To

guide a generic search algorithm, µSCALPEL requires the existence of test suites at both the

origin program and the target program. In contrast, Grafter does not require both clones

to be already tested by existing tests. In Grafter, organ extraction and adaptation is not

a search problem, rather a deterministic process guided by syntactic resemblance and its

goal is to reveal behavior differences between clones at runtime. The Java type-safe grafting
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technology presented in our paper may have the potential to be used for automated code

reuse.

Genprog transplants code from one location to another for automated repair [251]. Gen-

prog relies on existing tests as oracles to validate the repair candidates. Thus, it may not be

able to find repair solutions effectively, when a test suite is inadequate. A recent study shows

that using human-written tests to guide automated repair leads to higher quality patches

than using automatically generated tests [216]. By reusing human-written tests and boost-

ing test coverage for similar code, Grafter may help improve test oracle guided repairs.

Sidiroglou-Douskos et al. presented Code Phage, a system for automatically transferring in-

put validation checks [211]. Code Phage requires an error generating input and a normal

input. Through instrumented execution, they obtain a symbolic expression tree encoding a

portable check. Grafter can be used to transplant code fragments with arbitrary lines of

code, not limited to input validation checks.

Skipper copies related portions of a test suite when developers reuse source code [148].

It determines relevant test cases and transforms them to fit the target system. Skipper is

built on Gilligan [101,102] and requires users to provide a pragmatic reuse plan to establish

the mapping of reused entities (e.g., classes, methods) from the original system to the target

system and guide the transformation process. Skipper also assumes that the reused code

is full-feature clones at the level of methods and classes. Grafter differs from Skipper in

three perspectives. First, Grafter supports sub-method level clones without explicit in-

terfaces. Second, Grafter does not require a reuse plan but rather leverages the syntactic

resemblance between clones to guide the grafting process. Third, Skipper may require man-

ual adjustments to fix compilation errors when the reuse plan is incomplete. In contrast,

Grafter is fully automated using transplantation rules (Section 4.3.2) and data propagation

heuristics (Section 4.3.3).

34



CHAPTER 3

Interactive Code Review for Similar Program Edits

This chapter presents an interactive approach that searches for similar code locations and

identify potential edit mistakes. Though code duplications and redundancies in local code-

bases have long been believed to be harmful, we demonstrate that allowing developers to in-

teractively express a desired change template and reason about commonalities and variations

among similar edits can significantly improve maintenance efficiency and avoid unintentional

edit inconsistencies during peer code reviews.

3.1 Introduction

Code reviews are one of the most important quality assurance activities in software devel-

opment [22,65, 71, 250]. According to a recent study, developers spend a significant amount

of time and effort to comprehend code changes during peer code reviews [226]. When the

information required to inspect code changes is distributed across multiple files, developers

find it difficult to inspect a diff patch [64].

Popular code review tools only compute differences per file, which enforces developers

to read changed lines file by file and focus on local program contexts only. Clone detection,

code search, and matching approaches [121,140,152,247] can locate similar code fragments,

but they do not summarize similar edits nor report change anomalies in a diff patch. These

approaches also do not empower users to interactively investigate systematic changes, as

they do not give users the control to iteratively generalize the search template. LSdiff [125]

automatically summarizes coarse-grained structural differences, but naively enumerates all

possible systematic change patterns as rules. This leads to the issue of poor scalability and
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Figure 3.1: An overview of Critics workflow

a high rate of false positives.

We design Critics, a new approach for interactively searching and inspecting similar edits

during peer code reviews. Figure 3.1 gives an overview of Critics. By selecting a certain

region of a diff patch, a reviewer can specify the program change she wants to investigate.

Critics then extracts a change template by including the surrounding unchanged code parts

that the selected change depends on. A reviewer can further customize the template to

enable flexible code matching. For example, a reviewer can parameterize variable names,

types, and method calls so that the template can be matched with a location with different

identifier names. Using the customized template, Critics searches the entire codebase to

identify similar edits and report potential edit inconsistencies that violate the template. A

reviewer can incrementally refine the template based on previous search results, until she is

confident that no more similar edits or edit mistakes can be found.

We evaluated Critics through two user studies and a comparison with an automated

template construction approach [160]. In the first study, we interviewed six professional

developers at Salesforce.com to solicit feedback about the usability of Critics in an industrial

setting. Each participant first used Critics to investigate diff patches mined from the version

history of their own codebase, and then shared insights about code review challenges at

Salesforce.com and whether and how Critics could help. Salesforce developers confirmed

that they indeed faced the difficulty of reviewing similar edits due to code redundancy in
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their codebase. All of them found Critics helpful by allowing them to search for similar edits

and reporting edit mistakes. They also mentioned that the interactive code search feature in

Critics was beneficial for developer onboarding in their team, where novices could efficiently

explore the codebase using desired code patterns. In the second study, we quantified the

effectiveness of Critics by conducting a within-subjects user study with twelve students.

Each student performed two code review tasks, one using Critics and the other using the

default code review features in Eclipse. The evaluation result showed that participants

answered code review questions 47% more correctly and 32% faster on average with the

assistance of Critics, in comparison to the baseline. Finally, we compared the code search

accuracy of Critics with a state-of-the-art approach called Lase [160]. We found that in

five out of six cases, interactively customizing a change template using Critics could achieve

the same or higher accuracy than Lase within an average of four iterations, demonstrating

the advantage of interactive template construction over automated template construction.

The rest of this chapter is organized as follows. Section 3.2 illustrates the code review

process in Critics using a real-world diff patch from Eclipse. Section 3.3 describes template

construction and refinement in Critics. Section 3.4 describes tree-based code matching and

inconsistency detection. Section 3.5 demonstrates tool features in the Eclipse plug-in of

Critics. Section 3.6 describes the evaluation. Section 3.7 discusses the threats to validity.

3.2 Motivating Example

This section overviews Critics with an example drawn from the Eclipse Standard Widget

Toolkit (SWT) project. SWT is an open source widget toolkit with 400K lines of source

code over 1000 files. This example is based on a diff patch at revision 13516, as shown in

Figure 3.2. The patch is adapted and simplified for presentation purposes.

Suppose Alice updates the program to use the new sendEvent API. Barry needs to review

Alice’s changes to ensure all locations using sendEvent are updated correctly and to check

if there is any location that Alice forgot to change. The diff patch authored by Alice is over

450 lines of changes distributed across 42 different locations.

37



1 int keyDownEvent (int wParam, int lParam) {

2 - ExpandItem item = items [focusIndex];

3 switch (wParam) {

4 case OS.VK_SPACE:

5 case OS.VK_RETURN:

6 Event event = new Event ();

7 - event.item = item;

8 - sendEvent(true, event);

9 + event.item = focusItem;

10 + sendEvent(focusItem.expanded ? COLLAPSE:EXPAND,

event);

11 + refreshItem(focusItem);

12 ...

13 }

(a) A changed region selected by Barry

1 int keyPressedEvent (int wParam, int lParam) {

2 ExpandItem item = items [focusIndex];

3 switch (wParam) {

4 case OS.VK_SPACE:

5 case OS.VK_RETURN:

6 Event event = new Event ();

7 event.item = item;

8 sendEvent(true, event);

9 ...

10 }

(b) Code location with exactly the same context but

missing the update

1 int keyReleaseEvent (int wParam, int lParam) {

2 - ExpandItem item = items [focusIndex];

3 switch (wParam) {

4 case OS.GDK_RETURN:

5 case OS.GDK_SPACE:

6 Event ev = new Event ();

7 - ev.item = item;

8 - sendEvent(true, ev);

9 + ev.item = focusItem;

10 + sendEvent(focusItem.expanded ? COLLAPSE:EXPAND,

ev);

11 + refreshItem(focusItem);

12 ...

13 }

(c) A similar but not identical change using a different

variable name, ev, instead of event

1 int buttonUpEvent (int wParam, int lParam) {

2 - ExpandItem item = items [focusIndex];

3 if (lParam == HOVER) {

4 Event bEvent = new Event ();

5 - bEvent.item = item;

6 - sendEvent(true, bEvent);

7 + bEvent.item = focusItem;

8 + sendEvent(focusItem.expanded ? EXPAND:COLLAPSE,

bEvent);

9 + refreshItem(focusItem);

10 ...

11 }

(d) Inconsistent change by mistakenly swapping two

expressions, EXPAND and COLLAPSE

Figure 3.2: Simplified examples of similar and consistent changes, inconsistent changes, and

missing updates. Code deletions are marked with ‘-’ and additions are marked with ‘+’.

In order to find incorrect edits, Barry needs to inspect line level differences file by file. In

particular, to identify missing updates, he must also inspect unchanged code as well, since

the original diff patch does not show what did not change. The following shows how Barry

may iteratively use Critics to inspect similar changes and to detect potential missing or

inconsistent updates.

Iteration 1. Suppose Barry first inspects changes in the keyDownEvent method in Fig-

ure 3.2(a). He wonders whether there are other methods that are changed similarly to

keyDownEvent. So he selects the changed code in the diff patch. Given the selected change,

Critics identifies the change context—unchanged, surrounding code relevant to these edits

in terms of control and data dependences, which further serves as an anchor to locate missing
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updates during the searching process. So the default template generated by Critics consists

of both the initial edit selection and the change context. Using the template, Critics locates

code that matches the change context but is missing the update, shown in Figure 3.2(b).

Iteration 2. After examining the search result in the first iteration, Barry wants to explore

further since he suspects other locations may use different identifier names. To match sim-

ilar but not identical changes, Critics allows Barry to generalize the change template by

parameterizing type, variable, and method names. So Barry generalizes the variable name

event and searches again. This time, the location in Figure 3.2(c) is summarized although

it uses a different variable name, ev.

Iteration 3. Critics includes the change context such as the switch and case statements

from lines 3 to 5 in Figure 3.2(a) in the current template. Barry wonders if there are similar

changes in different control-flow contexts such as a for loop or an if-else branch. He ex-

cludes the switch statement. Using the new refined template, Critics locates buttonUpEvent

in Figure 3.2(d). This location uses an if statement instead of a switch statement. How-

ever, Critics flags this location as a potential inconsistent change, since Alice mistakenly

swapped the two expressions, EXPAND and COLLAPSE. Such mistake is usually hard for the

reviewer to detect during code inspection.

3.3 Change Template Construction and Refinement

Critics provides a novel integration of program differencing and pattern-based interactive

code search to help developers note inconsistent or missing changes during peer code reviews.

It consists of the following three phases. Phase I takes a user specified change region and

extracts the relevant context. Phase II allows developers to customize the change template by

interactively generalizing its content. Phase III matches a template against the codebase to

summarize similar changes and to detect potential anomalies. The reviewer can investigate

the diff patch and achieve the desired result by iteratively refining the change template

(Phase II) and searching change locations (Phase III).
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3.3.1 Program Context Extraction

Critics parses the selected changed fragments into Abstract Syntax Tree (AST) edits and

extracts the change context—surrounding unchanged code on which the selected edits are

control and data dependent by performing static intra procedural slicing [103]. It selects all

upstream dependent AST nodes based on a transitive relation within a method. The context

could indicate where edits should be applied and serve as an anchor to locate similar edits

and to identify potential mistakes.

• Data dependence: AST node nj is data dependent on node ni, if node nj uses a

variable whose value is defined in node ni. For example, by analyzing data dependencies

between edits and surrounding unchanged code, Critics includes a variable declaration

at line 6, whose variable event is referenced from the deleted line 7 in Figure 3.2(a).

• Control dependence: AST node nj is control dependent on node ni, if node nj may or

may not execute depending on a decision made by node ni. For example, the switch

and case statements from lines 3 to 5 in Figure 3.2(a) are included since the execution

of the changed code depends on these control predicates.

3.3.2 Change Template Customization

Critics creates a default change template, including the initial selected fragments and the

change context. A reviewer can customize the template by generalizing its content and to

iteratively refine the template.

Parameterizing Identifiers. Critics allows a developer to parameterize type, variable,

and method names, so that they can be regarded as equivalent to different identifiers dur-

ing the matching process. Suppose that there is a statement char[] data = foo() in the

change template. By parameterizing the variable name, data, Critics automatically prop-

agates the parameterization to all statements referencing data and this statement can be

matched to any other statements in the form of char[] $V1 = foo() where $V1 represents

any variable name.
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Excluding Statements. Critics allows a user to exclude certain statements in the change

template. Specially, by excluding contextual statements, Critics is able to find similar

changes in multiple contexts. An excluded statement is mapped to a parameter $EXCLUDED

in a generalized change template. For example, by converting switch(x) to $EXCLUDED, it

can match if(x == 1114) in line 3 in Figure 3.2(d).

3.4 Interactive Code Search and Anomaly Detection

Given a customized change template, Critics matches the template against the entire code-

base and detects inconsistent or missing edits in other similar code locations.

3.4.1 Tree-based Program Matching

Tree Matching. Critics parses all Java methods in a codebase to abstract syntax trees

and searches for similar subtrees by matching the change template against other methods

in the codebase. Critics applies an efficient and worst-case optimal tree matching algo-

rithm, Robust Tree Edit Distance (RTED) [175], which combines the strengths of Zhang’s

algorithm [261] and Demaine’s algorithm [61]. Zhang’s algorithm is efficient for trees with

O(log n) depth but has the worst-case time complexity O(n4). Demaine’s algorithm has

a better worst-case time complexity O(n3) but runs into the worst case frequently. RTED

recursively decomposes the input trees into sub-forests, either removing the leftmost or the

rightmost root node. It then computes the tree edit distance recursively by finding structural

alignment. RTED then provides a list of matching node pairs with node edit operations that

transform one tree into another.

The original RTED algorithm finds node-level alignment in a flexible manner, producing

many false positives. Therefore, Critics further computes token-level alignment between

two matching nodes. If the token labels are exactly the same, Critics considers them

to be equivalent. While matching labels, we match the parameterized names such as $V1

in the query tree with any concrete name in the target tree to support flexible matching.

For example, Critics inspects a node pair that RTED aligns by calculating the minimum
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edit distance, as described in line 7 in Algorithm 1. The TokenMatch procedure checks

equivalence between two AST nodes in terms of token-level string values (line 14). Given

a list of token level matches, Critics checks whether a parameterized name is mapped to

a concrete name. Suppose that RTED aligns two nodes: “$T $V = $M(y)” and “int x =

foo(y).” Critics produces token level alignment: {(“$T”, ‘int”), (“$V”, “ x”), (“$M(y)”,

“foo(y)”)}. Because these token level mappings are allowed via explicit parameterization

in the previous step, Critics considers the aligned two nodes as identical and continues to

check the next aligned pair.

As another adaptation to RTED, Critics checks whether there is an excluded node in

the list of the aligned nodes computed by RTED. If RTED aligns an $EXCLUDED node with

another node, Critics allows such matching, as described in line 11 in Algorithm 1. Suppose

that Critics takes a node pair switch(x) in a query tree and if(x == y) in a target tree.

If the node switch(x) is excluded by a user, Critics matches the two nodes. Figure 3.3

shows an example of node level and token level alignment.

Critics improves the performance of search by caching relevant data to reduce search

load. Critics maps an identifier name to a set of source files using the identifier name and

stores the mappings in a hash table. Before running RTED, Critics inspects each identifier

name in a query tree and identifies a set of files using the same set of identifier names by

looking up the hash table. Then, it only scans through the searched source files to avoid

unnecessary matching.

3.4.2 Change Summarization and Anomaly Detection

Each template consists of a before state and an after state. The before state refers to code

before edits. Conversely, the after state refers to the code after edits. Using the tree matching

algorithm, Critics finds two sets of similar subtrees, matching the old and the new version

respectively. If a method matches the before state, but not the after state, it implies that

the programmer either made an incorrect edit or forgot to update the code. Similarly, if a

method matches the after state but not the before state, Critics reports it as an anomaly
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N1: m1(int x, int y) 

N4: if(x == 1114) 
$EXCLUDED 

N5: char[] buf = foo() 
$T1 $V1 = $M1() 

N6: String c = baz(buf, b) 
String c = baz($V1, b) 

N2: int a = y N3: int b = 0 

(a) A query tree.

M1: m2(int x, int y) 

M4: switch(x) 

M5: case 1114 

M6: byte[] buffer = bar() M7: String c = baz(buffer, b) 

M2: int a = y M3: int b = 0 

(b) A target tree matched with the above query tree.

Figure 3.3: RTED matches nodes, such as (N1, M1), (N2, M2), (N3, M3), (N4, M4), (N5, M6), and

(N6, M7), and Critics matches tokens in the labels of two matched nodes N5 and M6, such as

(“$T1”, “byte[]”), (“$V1”, “buffer”), and (“$M2”, “bar”).

as well, because similar edits are made to different contexts. We report two types of change

anomalies: (1) inconsistent changes, where edits are applied but partially incorrect and (2)

missing updates, where the required edits are completely missing. This feature of detecting

change anomalies distinguishes Critics from other pattern mining and anomaly detection

approaches that work with a single program version as opposed to a diff patch.
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Algorithm 1: Searching similar subtrees.
Input : Let AST be an Abstract Syntax Tree for a program.

Input : Let QT be a query tree from a customized change template.

Output: Let MTs be a collection of the matched subtrees.

Algorithm searchSimilarSubtrees(QT)

1 MTs := ∅;

2 foreach nodei from AST do

3 t := getSubtree(nodei);

/* t is a target tree */

4 if RTED.match(QT, t) ≡ TRUE then

5 nodePairs := ∅;

6 nodePairs := nodePairs ∪ {(ni, mi) — ni ∈ QT,

mi ∈ t, where (ni, mi) is a pair of nodes that

RTED matches and aligns.};

7 if tokenMatch(nodePairs) ≡ TRUE then

8 MTs := MTs ∪ {t};

9 return MTs;

Procedure tokenMatch(nodePairs)

10 foreach pairi ∈ nodePairs do

11 if pairi.n is excluded then

12 continue;

13 if match(pairi.n.label, pairi.m.label) ≡ FALSE then

/* pairi.n.label is different from pairi.m.label. */14 tokenPairs := ∅;

15 tokenPairs := tokenPairs ∪ {(tj , uj) —

tj ∈ pairi.n.label, uj ∈ pairi.m.label, where

(tj , uj) is a pair of a deleted token and an ins-

erted token that CRITICS matches and aligns.};

16 if ∀tj ∈ tokenPairs, tj is parameterized then

17 continue;

else

18 return FALSE;

19 return TRUE;

3.5 Implementation and Tool Features

Critics is instantiated as an Eclipse plug-in. Both the tool and its source code are available

online.1 Our implementation leverages ChangeDistiller [75] to compute AST edits, Crystal2

1https://github.com/tianyi-zhang/Critics

2https://code.google.com/p/crystalsaf/
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for data and control flow program analysis, and RTED [175] for computing tree edit distance.

Now we illustrate the tool features in Eclipse plug-in of Critics.

Figure 3.4: A screen snapshot of Critics Eclipse Plug-in and its features.

Suppose Barry and Alice are developing an online sales system for a pizza store. Suppose

Barry is conducting a code review of a diff patch authored by Alice. The check-in message

says, “update to use log4j for log management.” Barry wants to check that Alice refactored

all locations that print log messages to the console, so that these locations can use Apache

log4j APIs instead. Without Critics, Barry must inspect each changed location one after

another because existing diff displays only line-level differences per file. Furthermore, he has

to search the entire codebase to ensure that Alice did not miss anything, because missing

updates do not appear in the diff patch. This manual reviewing process not only requires

the deep knowledge of the codebase but also is tedious and error prone.

Eclipse Compare View. Barry first inspects a region of changed code in method

OrderDealer using the Eclipse Compare View (see ¬ in Figure 3.4). In this method, Alice

updated the original System.out.println statement with log4j API debug. Barry checked

this change and now he wonders if Alice updated all other similar locations correctly. To
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Figure 3.5: Searching results and diff details.

automate this process, he selects the changed code in both old and new versions and then

provides the selected code as an input to Critics for further search.

Diff Template View. Critics abstracts and visualizes the selected change as an ab-

stract diff template. Barry can review and customize the template in a side-by-side Diff

Template View (see  in Figure 3.4). The diff template serves as a change pattern for

searching similar edits. In the template, Critics includes change context—unchanged, sur-

rounding statements relevant to the selected change in the template. In this example, Critics

includes an if statement because the changed code is executed only if the if condition is

satisfied. Nodes with light blue color refer to statements that the user originally selected.

Yellow nodes represent statements that the change is control dependent on. Green nodes

represent parent nodes of the selected code. Orange nodes represent statements that the

change is data dependent on. Barry can preview the textual template in the Textual Diff

Template View (see ± in Figure 3.4).

Matching Result View. Based on the diff template, Critics identifies similar changes

and locates anomalies. It reports them in the Matching Result View. If the syntactic

differences match the diff template in both the old and new versions, Critics summarizes

this location as similar change in Matching Locations (see ® in Figure 3.4). If the target

code matches the old version but does not match the new version, such unpairing is reported

as anomalies in Inconsistent Locations (see ¯ in Figure 3.4). In the first attempt, Barry

does not edit the template and searches matching locations. Critics summarizes locations

that are identical to the template and reports those violations against the template, as shown

in Figure 3.5. The bake method is detected as a possible anomaly, because it shares the same
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Figure 3.6: Dialog for parameterizing type, method, and identifier names in an abstract diff

template.

context in the old revision but Alice did not update this method.

Diff Details View. When Barry clicks an individual change location in the Matching

Result View, the corresponding differences are presented in the Diff Details View (see °

in Figure 3.4). Changed code is highlighted in this view, and inserted code is marked with

‘+’, while deletion is marked with ‘-’. By comparing contents in the Diff Details View

and those in the Diff Template View, Barry can quickly figure out why each location is

identified as a similar change or reported as an anomaly, without navigating different files

back and forth. If he wants to drill down into the source code and double clicks a location,

Critics redirects him to the change location in the Eclipse Compare View.

Template Refinement and Search. To match similar but not identical changes, Barry

can generalize identifiers in the diff template, including type, variable, and method names, as

shown in Figure 3.6. When he generalizes variable log and method debug, Critics locates

method deliver which uses variable myLogger and invokes method error instead of log

and debug. Barry further excludes a context node, an if statement, in the template by

double clicking the node. This time Critics reports a change within a while loop in method

run in the Matching Result View in Figure 3.4. Barry can progressively explore the

diff patch and search for similar changes till he is confident that all locations are updated
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correctly.

3.6 Evaluation

We evaluated Critics using two different methods. First, we conducted a user study with

professional software engineers to understand how Critics can help them during code re-

views. Engineers at Salesforce.com used Critics to investigate the real patches found in their

version history, authored by their own team. This study emulates the realistic code review

scenarios and solicits authentic feedback on the use of Critics in the real world. Second,

we conducted a lab study at the University of Texas at Austin, where twelve participants

investigated diff patches using both Critics and Eclipse diff and search. We selected Eclipse

diff and search as a baseline, because they are default features in Eclipse. We cannot use

existing clone-based search tools as a baseline, because they are not designed for inspecting

diff patches and thus participants cannot use them without adapting the tools to inspect

diff patches. These two evaluation methods (hands-on trials followed by semi-structured

interviews and a controlled experiment using human subjects) complement each other by

assessing the benefits of Critics both qualitatively and quantitatively.

3.6.1 User Study with Professional Developers at Salesforce.com

We recruited six participants from Salesforce.com. The participants included two software

developers, three quality engineers, and a project manager from the same team. This team

develops a platform for other teams to process and manage big data stored in the cloud.

The participant names and the product name are anonymized.

All six participants had at least three years of Java development experience in industry.

Five reported that they conduct code reviews at least weekly, using Collaborator, a de-

fault code review tool at Salesforce.3 Although one manager said he seldom reviews others’

changes, we still interviewed him, because he could provide valuable feedback from a man-

3http://smartbear.com/products/software-development/code-review/
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ager’s perspective. Table 3.1 shows the demographic information about the six participants.

Table 3.1: The demographic information of study participants

Subject Role Gender Age Java Experience Code Review Frequency

1 Developers Male 21-30 4 Weekly

2 Quality Engineer Female 21-30 3 Weekly

3 Manager Male 41-50 4 Seldom

4 Quality Engineer Male 21-30 5 Weekly

5 Quality Engineer Female 31-40 10 Weekly

6 Developers Male 41-50 14 Daily

In terms of a study procedure, we first gave a presentation to introduce Critics’s features

to the participants. This presentation included a twenty-minute live demo of how to use

Critics Eclipse plug-in. To get accurate and comprehensive feedback, participants were

then asked to use CRITICS to investigate one of the four diff patches authored by their

colleagues. This could simulate hands-on experience of using Critics in a real world setting,

because the participants reviewed patches from their own system.

The four patches came directly from the version history of the Salesforce codebase that

they currently work on. We selected the patches that include similar changes to multiple

files, because the goal of Critics is to help developers examine similar changes and find

potential anomalies. Table 3.2 describes the associated commit log descriptions, the size

of the patches in terms of changed lines of code, and the number of changed files from

the actual version history. While we do not disclose the size of the Salesforce codebase for

confidentiality, we report that Critics is a mature tool that scales to an industrial-scale

project and the participants did not have any problems running Critics on their codebase

and patches.

For individual participants, the hands-on use of Critics lasted about 20 to 30 minutes.

Afterward, we conducted a semi-structured interview to solicit their feedback on the utility

of Critics. The advantage of semi-structured interviews is that they are flexible enough

to allow unforeseen types of information to be recorded [207]. The interviews were audio-

recorded and transcribed later for further analysis. The interview questions are described
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Table 3.2: Diff patches from Salesforce.com used for the study

ID Commit Description
Change Size

(LOC)

# of Changed

Files

1 Refactor test cases by moving bean maps to utils classes 743 22

2
Refactor the API to get versioned field values by passing

the version context as a parameter
943 34

3
Refactor tests by using try-with-resources statements to

ensure resource objects are released after program exits
484 10

4 Update common search tests by getting versioned test data 2224 12

below.

• What kind of challenges do you face when you conduct code reviews?

• In which situation, do you think Critics can help improve code reviews in your team?

• Would you like to have Critics be integrated with the code review tool you are cur-

rently using?

• How do you like or dislike Critics?

The interview results are organized by the questions raised during the interviews.

What kind of challenges do you face when you conduct peer code review? Collab-

orator allows developers to upload, compare, and comment patches during code reviews.

However, participants find it hard to review similar changes, since Collaborator only high-

lights differences on the uploaded patches, lacking the ability to identify underlying similar

change patterns and pinpoint overlooked mistakes.

“Since REST APIs across different versions generally share similar code snippets, refac-

toring on versioned APIs often involves similar changes. Unfortunately, these changes are

not always exactly the same, including subtle differences in different locations.”

“It is hard for us to find missing updates, especially if the reviewer is not familiar with

the codebase. So we totally depend on regression testing to check if there is any location we
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forgot to change, assuming it (the overlooked change) will break test cases. But, honestly, it

does not work very well.”

In which situations do you think Critics can help improve code reviews in your team?

The participants mentioned that Critics can help them inspect system-wide changes, so

that they do not need to manually walk through each changed location line by line. They

also discussed that code reviews are usually assigned to senior developers and consequently

piled up on them, since they are familiar with the codebase and are more likely to notice

oversight errors. They believed that the interactive search process of Critics is an efficient

method for novices to perform code reviews, relieving the burden of senior developers and

spreading knowledge between team members.

“Because currently in our company, reviewers only ensure the logic correctness and coding

style in uploaded patches. They barely check if there is any missing update, unless a reviewer

is very familiar with the codebase and knows where the developer should update. That is also

why we always assign code reviews to senior developers in the scrum team. The feature in

your tool can free us from piling code review tasks on our senior developers, since it can do

the inspection automatically without requiring deep knowledge of the codebase.”

“Critics would be helpful to check some API updates in our projects. For example, an

API from one team is updated and the old API is deprecated. Since people only change the

locations they know and reviewers usually do not intentionally check unchanged areas, we

cannot guarantee all locations are updated as expected. So using Critics could help us find

out all the locations that need to be updated in the early stage so that we do not need to wait

for regression testing or even worse, the customer to tell us if there is any place that we

updated incorrectly or forgot to update.”

Would you like to have Critics be integrated with your current code review tool? All six

participants provided strong positive answers and believed that it would be useful to have

Critics integrated to their code review tool, Collaborator.

“Definitely. It makes sense to integrate it with Collaborator, since it will save a lot of

time for code review.”
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“Of course. Currently Collaborator only highlights the changed location in a very

naive way. A feature like extracting and visualizing the change context can help us better

understand the change itself as well as find some underlying change patterns between related

changes.”

How do you like or dislike Critics? They thought Critics would be a good time saving tool

for code reviews. Four participants replied that they like the search feature a lot because

of its flexibility and interactivity compared with existing textual search. Two participants

shared the UI is not very intuitive at a first glance and it took some time for them to grasp

the UI.

“I like it since it is a great time saving tool for code review and I think its ability to find

similar changes can be useful in our work.”

“It will be more interesting if you can provide the change skeleton by default in the tree

graph and enable users to expand a node to see details if they want to.”

In summary, after using Critics to investigate their own team’s patches, participants told

us that Critics can improve developer productivity in code reviews and should be integrated

to Collaborator. Professional engineers encounter challenges when reviewing system-wide

code changes. Currently, in their work environment, they barely have any reliable mechanism

to guarantee all locations are correctly modified. Participants think Critics would help

them detect unnoticed locations. Its interactive search feature also makes it easier for less

experienced developers to use the tool. All participants strongly affirmed that they would

like to have Critics’s features as a part of their current code review environment.

3.6.2 Lab Study: Comparison with Eclipse Diff and Search

We conducted a user study with 12 participants to further evaluate the efficiency and us-

ability of Critics.

• RQ1: How accurately does a reviewer locate similar changes with Critics in compar-

ison to Eclipse diff and search?
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• RQ2: How correctly can a reviewer detect change anomalies with Critics in compari-

son to Eclipse diff and search?

• RQ3: How much time can a reviewer save in a code review task when using Critics?

In this study, we used counterbalancing to control the order effect. Each participant

carried out two different code review tasks, Patch 1 and Patch 2, once using Critics and

once with Eclipse diff and search. In this section, we refer to the setting of Eclipse without

Critics as diff in short. Patch 1 is a simple patch with 190 changed lines, and Patch 2 is a

complex patch with 680 changed lines. Both the order of the assigned tools and the order of

the assigned tasks were randomized to mitigate the learning effect. Table 3.3 describes the

patches in terms of data source, patch size (LOC), change description as well as the number

of methods that contain similar changes, inconsistent changes, and missing updates. It also

describes the user study questions for each patch.

Four of the twelve participants were electrical and computer engineering undergraduate

students and the other eight were all graduate students in software engineering. All partici-

pants had at least one year experience in using the Eclipse IDE. All but one participant had

code review experience with diff tools such as Eclipse diff and Git/SVN diff. Participation

was voluntary with no compensation offered.

Prior to each study session, all participants were given a twenty-minute tutorial to learn

how to use Critics. We gave them a live demo about inspecting a diff patch with Critics.

Participants first answered two warm-up questions about the assigned diff patch. Then

they were given a time to inspect a diff patch and answer three questions about similar

changes. All study tasks concern answering questions about similar changes, because the

goal of Critics is to support inspection of similar changes, not all types of code changes.

The questions required participants to identify methods that were changed similarly to a

given location and to search for potential anomalous locations where similar edits were

incorrect or completely missing. The three questions are described in Table 3.3. Though

these questions were initially designed as multiple-choice questions for ease of quantification,

we asked participants to explicitly identify individual method locations during code reviews.
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Participants were also encouraged to speak aloud during each task. Table 3.4 shows the

percentage of correct answers for each tool. To measure efficiency, we recorded the task

completion time from when participants started to inspect source code to the time when

they submitted the answers.

At the end of the user study, each participant was asked to complete a post study survey

to evaluate their experience with Critics and Eclipse diff. First, they were asked to rate

Critics and Eclipse diff separately on the aspects of relevance, clarity, and usefulness for

locating similar changes and detecting anomalies. The survey also included open-ended

questions to solicit qualitative feedback on how the users like or dislike Critics and the

suggestions for improving Critics.

Table 3.4: Average correctness of participants’ answers with and without Critics. For

example, (2/6) means that two out of six participants answered the question correctly.

Q1 (Similar Changes) Q2 (Inconsistent Changes) Q3 (Missing Updates) Time

Critics Diff Critics Diff Critics Diff Critics Diff

Patch 1 (Simple) 100% (6/6) 50% (3/6) 100% (6/6) 33% (2/6) 100% (6/6) 83% (5/6) 0:18:32 0:20:24

Patch 2 (Complex) 67% (4/6) 50% (3/6) 100% (6/6) 83% (5/6) 83% (5/6) 33% (2/6) 0:20:20 0:30:53

Identifying Similar Changes. Overall, participants using Critics found 13% more sim-

ilar locations than those using Eclipse diff and search. However, paired t-test failed to reject

the null hypothesis since the mean difference between two conditions was not statistically

significant (t=1.56, df=11, p-value=0.1462). This was mainly because, in the control condi-

tion, one pariticipant (P1) failed to find any similar locations within the given time, while

the rest participants could find most similar locations (91.5% on average) using the text

search feature in Eclipse. P1 explained that it was too hard to find the right keywords to

find other similar locations using text search. After removing this outlier data, the mean

difference between two groups was 5%, which was statistically significant (t=2.2473, df=10,

p-value=0.0484). Despite the small difference, through interactive template customization

and AST-based tree matching, Critics helped participants accurately find those locations

that are often hard to be found using text search. In particular, 10 out of 12 participants

found all similar locations correctly using Critics, while only 5 participants found all similar

locations using text search. Depending on the choice of keywords, text search may return
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too many or too few locations. Therefore, participants often stopped refining their keywords

once they found several but not all similar locations. However, by examining consistent and

inconsistent locations compared with a search template, participants using Critics quickly

re-evaluated their own understanding of similar locations and decided which code parts to

parameterize in the template. Compared with the simple patch (Patch 1), the complex

patch (Patch 2) required more template configuration and search iterations in Critics, and

participants often stopped refining the template after two or three iterations. At that point,

the customized template was still not general enough to find all similar changes.

Detecting Inconsistent Changes. Participants using Critics found 42% more incon-

sistent changes than those using Eclipse diff and search (paired t-test, t=2.80, df=11, p-

value=0.01718). In particular, all 12 participants using Critics found all expected inconsis-

tent change locations in both simple and complex patches, as opposed to 7 out of 12 with

Eclipse diff. Manually identifying subtle inconsistencies among similar locations was chal-

lenging, since Eclipse diff was only capable of computing pairwise program differences and

thus requires developers to go over each change manually. Critics automatically detected

inconsistent changes by contrasting different locations with a given search template.

Detecting Missing Updates. Compared with using Eclipse diff and search, participants

found 21% more locations that developers forgot to update using Critics (paired t-test,

t=2.234, df=11, p-value=0.04719). 11 out of 12 participants pinpointed all missing updates

correctly with Critics, while only 4 out of 12 found missing updates with Eclipse diff.

We observed that Eclipse diff was comparable to Critics, when inspecting a simple, small

patch (Patch 1 with 160 line changes), while participants could locate a missed update more

accurately when using Critics than Eclipse diff for the complex one (Patch 2 with 680 line

changes). This was mainly because, when using text search, it was much easier to identify

proper search keywords from a small diff patch, while more difficult to select proper keywords

from a large, complex patch to look for places that were overlooked to update.

Task Completion Time. Participants saved 6 minutes and 13 seconds with Critics on

average, completing the tasks 32% faster than Eclipse diff. However, the mean difference

was not statistically significant (paired t-test, t=-1.69, df=s11, p-value=0.1189). Because
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Figure 3.7: User Ratings for Critics and Eclipse Diff & Search (p<0.05 except for clarity)

four participants took longer time to find out which identifiers or statements to parameterize

using Critics. As pointed out in the post survey, participants would like Critics to provide

hints about which content in a diff template to parameterize. For the simple patch, Critics

reduced task completion time by 9% on average, 48% at most. But for the complex patch,

it reduced time by 34% on average, 60% at most. Consistent with the goal of Critics to

support investigation of similar changes, it was more useful when a patch consists of a large

amount of scattered similar edits.

User Feedback. Figure 3.7 shows likert-scale ratings from the post survey. Compared with

Eclipse diff, participants gave higher ratings to Critics regarding the relevance of identified

similar locations (paired t-test: t=4, df=11, p-value=0.002), usefulness of locating similar

changes (paired t-test: t=6.665, df = 11, p-value=3.54e-05), and usefulness of detecting

anomalies (t=8.3731, df=11, p-value=4.224e-06). However, the mean difference of ratings

between Critics and Eclipse diff was not statistically significnat regarding the UI clarity

(paired t-test: t = 1.603, df = 11, p-value = 0.137).

We solicited qualitative feedback from participants to further understand ther ratings.

They appreciated that Critics reduces the effort to investigate similar changes, especially

in a large system. Using Critics, they only needed to inspect one location, as opposed
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to reading changed lines file by file without having the global context of what they are

reviewing.

“I like the way it (Critics) automatically identifies possible similar edits that I could miss

and detects anomalous changes. It really speeds up the code review process.”

However, opinions were divided on the usability of Critics’s UI. Three participants

mentioned that its user interface is not intuitive and would benefit from extra visual options

or instructions. They also suggested that Critics should provide configuration hints, e.g.,

which identifier should be generalized.

“It would be much more straightforward if Critics gave some hints about which identifiers

should be generalized. Currently it seems totally depends on developer’s sense.”

“It would be more straightforward for me if separating views for missed and inconsistent

changes and only displaying the windows related to code review.”

Overall, participants found that, compared with Eclipse diff & search, Critics identified

more relevant locations and was more useful in terms of locating similar edits and detecting

edit mistakes. They believed that Critics could complement the use of diff during inspection

of similar changes.

3.6.3 Comparison with LASE

Lase [160] automatatically applies similar edits by searching for locations and applying cus-

tom edits to individual locations. It requires multiple change examples as input to generate

abstract transformation. It is challenging to directly compare Critics with Lase, because

Lase’s template generation requires multiple examples apriori and is fixed, while Critics is

an interactive tool that a human can iteratively configure a template. Therefore, we simulate

a human-driven template configuration process in Critics. From the lab study described in

the previous section, we find that users follow common patterns while interactively generaliz-

ing the selected edit content and context. They usually generalize one identifier or statement

at a time and re-run the search; if the search result degrades, they undo the generalization

and try a different identifier or statement. In other words, their generalization strategy is
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similar to the typical greedy search. When generalizing identifiers, users first generalize a

variable with a long name rather than a short one. When excluding statements, users prefer

to exclude the context node on which a change is control dependent, such as if and for. We

encode these patterns in a test script to simulate the interactive use of Critics. Then we

compare Lase’s accuracy with Critics’s accuracy at each iteration.

The oracle test suite is drawn from the similar edits identified by Park et al. [172] in

Eclipse JDT and Eclipse SWT and consists six sets of similar changes. In this test suite,

the patch size ranges from 190 to 680 lines of edits. The number of locations with similar

changes ranges from three to ten locations. The first two changed locations are used as

input examples to Lase, using the same approach described in Meng et al. [160]. Figure 3.8

describes the accuracy variation in Critics’s simulation. Figure 3.8a represents F1 score (a

harmonic mean of precision and recall) for finding similar changes while varying the number

of excluded nodes. Figure 3.8b represents F1 score for finding similar changes, while varying

the number of generalized identifiers. Table 3.5 shows the comparison of search accuracy

between Critics and Lase, including the iteration numbers till Critics achieves the best

result and the average execution time for each iteration. In five out of six cases, Critics

achieves the same or higher accuracy than Lase within a few iterations, showing the benefit

of interactive template configuration as opposed to fixed template configuration.

Table 3.5: Comparison between Critics and Lase

Critics Lase

Precision Recall Iteration Time (sec) Precision Recall

Patch 1 1 1 4 1.66 1 1

Patch 2 1 0.9 6 8.95 0.92 0.75

Patch 3 1 1 0 13.52 1 1

Patch 4 1 1 7 71.98 1 0.33

Patch 5 1 1 4 6.86 1 1

Patch 6 1 0.33 3 1.47 1 1

Average 1 0.87 4 17.41 0.99 0.84
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(a) F1 score for finding similar edit locations by excluding statements.

(b) F1 score for finding similar edit locations by parameterizing identifiers.

Figure 3.8: F1 score on change template customization.
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3.7 Threats to Validity

In terms of construct validity, in our lab study, we measured the correctness of the answers

and the time taken to answer questions to measure developer productivity in inspecting sim-

ilar changes. Other measures such as the number of potential bugs detected could be used to

measure developer productivity for peer code reviews. In our user study, we used both large

and small patches and counterbalanced the order and task assignment to mitigate learning

effect. Because the goal of Critics is to help inspect similar changes, the questions mainly

pertain to the questions about similar scattered changes, not general program comprehension

questions.

In terms of external validity, in our lab study, twelve student developers were not familiar

with Eclipse JDT, from where patches are drawn. The lab study may not generalize to

professional developers who are familiar with their codebase. To overcome this limitation,

in our user study at Salesforce.com, six engineers investigated the patches from their own

system.

The study at Salesforce is a qualitative study based on six interviews. Because of the

qualitative nature of the study, we do not make any quantitative statements about how

much productivity gain Critics can provide in comparison to their current code review tool,

Collaborator. The study was conducted only in one company. We do not believe this

is a significant limitation because the background of the participants and the code review

practice at Salesforce.com are similar to other large software companies. In the comparison

with Lase, our test suite of similar changes includes only patches from Park et al.’s data

set [172] and may not generalize to projects other than Eclipse JDT and SWT.

To mitigate internal validity, in our lab study, before the participants started the task,

we asked them to inspect the change example first and answer two questions to calibrate

their understanding. The first question required them to choose true or false about detailed

statements about the change to ensure that they have carefully inspected the example. The

second question required them to identify changes similar to the given example. The warm

up questions helped them better understand change similarity.
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3.8 Summary

This chapter describes an interactive code review approach called Critics that summarizes

similar program edits in a diff patch and identifies edit inconsistencies in other similar lo-

cations. Compared with existing code search and clone inconsistency detection techniques,

Critics allows developers to express a program change of interest as an abstract change

template and to incrementally refine the template based on previous search results. A user

study at Salesforce.com shows that Critics scales to an industry-scale project and can be

easily adopted by professional developers. Another user study with twelve students shows

that, in code review tasks, participants using Critics found more similar edits and detected

more edit mistakes in less time, compared with using code review features in Eclipse. The

advantage of interactive template construction is further demonstrated by a comparison with

an automated template construction approach, where Critics achieves the same or higher

code search accuracy in most cases.

Critics detects syntactic inconsistencies among similar edits but it is not capable of in-

vestigating runtime behavioral discrepancy caused by such inconsistent edits. In the next

chapter, we propose a complementary approach, Grafter to reuse tests and compare run-

time behaviors between clones via code transplantation and differential testing.
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CHAPTER 4

Automated Test Transplantation for Similar Programs

This chapter presents Grafter, a differential testing technique to reuse tests among similar

code and examine behavioral similarities and differences. Compared with Critics, which

detects syntactic inconsistencies among similar program locations, Grafter further enables

developers to investigate behavioral discrepancies among these locations.

4.1 Introduction

When copying and pasting code fragments, developers express the desire to examine and

contrast runtime behavior of clones [74, 101]. Furthermore, in the user study of Critics,

Salesforce developers said “we totally depend on regression testing to check if there is any

location we forgot to change, assuming it will break test cases.” However, regression testing

may not work well due to a lack of test cases. Our manual analysis of 56 pair of three

open-source projects shows that, in 46% of clone pairs, only one clone is tested by existing

tests, but not its counterpart (to be detailed in Section 4.5). No existing techniques can help

programmers reason about runtime behavior differences of clones, especially when clones are

not identical and when clones are not tested. In the absence of test cases, developers can

only resort to static analysis techniques to examine clones [111,140,177,188,263], but these

techniques are limited to finding only pre-defined types of cloning bugs such as renaming

mistakes or control-flow and data-flow inconsistencies.

Given a pair of clones and an existing test suite, Grafter helps developers examine the

behavioral differences between these clones by exercising them using the same test. Test

reuse for clones is challenging because clones may appear in the middle of a method without
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a well-defined interface (i.e., explicit input arguments and return type), which also makes it

hard to directly adapt test for reuse. Such intra-method clones are often found by widely-

used clone detectors such as Deckard [111] or CCFinder [121]. Grafter identifies input and

output parameters of a clone to expose its de-facto interface and then grafts one clone in

place of its counterpart to exercise the grafted clone using the same test.

Similar to how organ transplantation may bring incompatibility issues between a donor

and its recipient, a grafted clone may not fit the context of the target program due to vari-

ations in clone content. For example, if a clone uses variables or calls methods that are

not defined in the context of its counterpart, simply copying a clone in place of another

will lead to compilation errors. To ensure type safety during grafting, Grafter performs

inter-procedural analysis to identify variations in referenced variables and methods. It then

adapts the grafted clone using five transplantation rules to handle the variations in ref-

erenced variables, types, and method calls. Finally, it synthesizes stub code to propagate

input data to the grafted clone and then transfers intermediate outputs back to the recipient.

Grafter supports differential testing at two levels: test outcomes (i.e., test-level compar-

ison) and intermediate program states (i.e., state-level comparison). During differential

testing, Grafter does not assume that all clones should behave similarly nor considers that

all behavioral differences indicate bugs. In fact, a prior study on clone genealogies [126] indi-

cates that many syntactically similar clones are used in different contexts and have intended

behavioral differences. The purpose of differential testing in Grafter is rather to illuminate

and expose behavioral differences at a fine-grained level automatically and concretely by

pinpointing which variables’ states differ in which test.

We evaluate Grafter on 52 pairs of nonidentical clones from three open-source projects:

Apache Ant, Java-APNS, and Apache XML Security. Grafter successfully grafts and

reuses tests in 49 out of 52 pairs of clones without inducing compilation errors. Successfully

reusing tests in 94% of the cases is significant, because currently no techniques enable test

reuse for nonidentical clones appearing in the middle of a method. Grafter inserts up

to 33 lines of stub code (6 on average) to ensure type safety during grafting, indicating

that code transplantation and data propagation in Grafter are not trivial. To assess its
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fault detection capability, we systematically seed 361 mutants as artificial faults using the

Major mutation framework [116]. We use Jiang et al.’s static cloning bug finder [111]

as a baseline for comparison. By noticing runtime behavioral discrepancies, Grafter is

more robust at detecting injected mutants than Jiang et al.—31% more using the test-level

comparison and almost 2X more using the state-level comparison. Grafter’s state-level

comparison also narrows down the number of variables to inspect to three variables on

average. Therefore, Grafter should complement static cloning bug finders by enabling

runtime behavior comparison. Our grafting technology may also have potential to assist

code reuse and repair [41, 96,176,251].

The rest of this chapter is organized as follows. Section 4.2 illustrates a motivating

example. Section 4.3 describes how Grafter reuses tests from its counterpart clone by

grafting a clone. Section 4.5 describes the evaluation of Grafter and comparison to Jiang

et al. Section 4.6 discusses threats to validity.

4.2 Motivating Example

This section motivates Grafter using an example based on Apache Ant. The change sce-

nario is constructed by us to illustrate the difficulty of catching cloning bugs. Figure 4.1

shows the pair of inconsistently edited clones, one from the setIncludes method in the Copy

class (lines 6-15 in Figure 4.1a) and the other from the setExcludes method in the Delete

class (lines 6-15 in Figure 4.1b). These clones are syntactically similar but not identical—

the left program uses a field includes of type IncludePatternSet while the right program

uses a field excludes of type ExcludePatternSet. The Copy class implements the task of

copying files matching the specified file pattern(s). On the other hand, Delete removes files

that do not match the pattern(s). Methods setIncludes and setExcludes both split the

input string by a comma and add each pattern to a pattern set, includes and excludes

respectively. Figure 4.2 shows a test case, testCopy, which creates a Copy object, specifies

two copied file patterns as a string "src/*.java, test/*.java", and then checks if all java

files in the src folder and the test folder are copied to a target directory. However, the
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Delete class is not tested by any existing test.

1 public class Copy extends Task{

2 private IncludePatternSet includes;

3

4 public void setIncludes(String patterns){

5 ...

6 if(patterns != null && patterns.length() > 0){

7 - StringTokenizer tok=new StringTokenizer(

patterns,",");

8 - while(tok.hasMoreTokens()){

9 - includes.addPattern(tok.next());

10 - }

11 + String[] tokens = StringUtils.split(patterns, "

,");

12 + for(String tok : tokens){

13 + includes.addPattern(tok);

14 + }

15 }

16 }

17 ...

18 }

19

20 public class IncludePatternSet{

21 public Set<String> set;

22 public void addPattern(String s) { set.add(s); }

23 ...

24 }

(a) Correctly edited clone in the Copy class

1 public class Delete extends Task{

2 private ExcludePatternSet excludes;

3

4 public void setExcludes(String patterns){

5 ...

6 if(patterns != null && patterns.length() > 0){

7 - StringTokenizer tok=new StringTokenizer(

patterns,",");

8 - while(tok.hasMoreTokens()){

9 - excludes.addPattern(tok.next());

10 - }

11 + String[] tokens = StringUtils.split(patterns, "

.");

12 + for(String tok : tokens){

13 + excludes.addPattern(tok);

14 + }

15 }

16 }

17 ...

18 }

19

20 public class ExcludePatternSet{

21 public Set<String> set;

22 public void addPattern(String s) { set.add(s); }

23 ...

24 }

(b) Inconsistenly edited clone in the Delete class

Figure 4.1: Similar edits to update the use of StringTokenizer API to StringUtils.split in

Copy and Delete.

1 @Test

2 public void testCopy(){

3 Task copyTask = FileUtils.createTask(FileUtils.COPY);

4 ...

5 copyTask.setIncludes("src/*.java, test/*.java");

6 JobHandler.fireEvent(copyTask);

7 assertTrue(checkFileCopied());

8 }

Figure 4.2: A test case for the Copy class.

StringTokenizer is a legacy class and its usage is now discouraged in new code. There-

fore, Alice updates the use of StringTokenizer API to StringUtils.split in both Copy

and Delete in Figure 4.1. However, she accidentally changes the separator from ‘,’ to

‘.’ in Delete (line 11 in Figure 4.1b). Such mistake is difficult to notice during manual

inspection, as these programs are similar but not identical. An existing cloning bug finder

by Jiang et al. would fail to find the mistake, as it checks for only three pre-defined cloning
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1 public class Copy extends Task{
2 private IncludePatternSet includes;

3 + private ExcludePatternSet excludes;

4

5 public void setIncludes(String patterns){
6 ...
7 /* this is stub code inserted for data transfer*/

8 + ExcludePatternSet excludes_save = excludes;

9 + excludes = new ExcludePatternSet();

10 + excludes.set = includes.set;

11

12 /* the original code is replaced with the grafted code
from setExcludes*/

13 - if(patterns != null && patterns.length() > 0){
14 - String[] tokens = StringUtils.split(patterns, ",");
15 - for(String tok : tokens){
16 - includes.addPattern(tok);
17 - }
18 - }
19 + if(patterns != null && patterns.length() > 0){
20 + String[] tokens = StringUtils.split(patterns, ".");
21 + for(String tok : tokens){
22 + excludes.addPattern(tok);
23 + }
24 + }
25

26 /* this is stub code inserted for data transfer*/

27 + includes.set = excludes.set;

28 + excludes = excludes_save;

29 }
30 }

Figure 3: Grafter’s edits to reuse the original test of the
setInclude method in Copy.java on the setExclude method
in Delete.java. Lines 19-24 are the clone transplanted from
the setExclude method to the setInclude method. Line 3 is
the declaration statement Alice copied from Delete to avoid
the undefined identifier error. Lines 8-10 are to populate
data from includes to excludes to make sure the trans-
planted code receive the same inputs. Lines 27-28 are to
transfer the value updates on excludes back to includes for
the test oracle examination.

inter-procedural analysis to find identifiers referenced by the
clones under focus and their subroutines and detects varia-
tions between them.

Grafter first builds a call graph to identify all method
call targets referenced by the clone and its subroutines in
the donor program. Similarly, it also builds a call graph for
the counterpart clone in the recipient program. By compar-
ing the call graphs between the two, Grafter can identify
a set of methods that are called by the grafted clone and
its subroutine(s) but are not defined in the recipient. If
two methods are identical in both the method signature and
body, there is no need to port the method, because it is al-
ready defined in the recipient program and the method call
will behave the same. Otherwise, the invoked method must
be ported to the recipient program using code transforma-
tion rules discussed in Phase II.

Then Grafter performs control flow analysis on each clone
and generates an inter-procedural control flow graph based
on the call graph. Figure 4 shows such inter-procedural
control flow graph for the setIncludes method in Figure 1,
where nodes represent corresponding program statements,
solid edges represent control flow, and dashed edges repre-
sent method invocation. Particularly, the gray nodes in Fig-
ure 4 represent the clone region (line 6 and lines 11-15 in
Figure 1) in setIncludes. The CFG edge entering the clone
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...

def = {}
use = {patterns}

Consumed = (Def(Copy)∪Def(setIncludes) \ Def(clone))∩Use(clone) 

                    = {includes, patterns}
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exit1
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IncludePatternSet.class

Figure 4: An inter-procedural control flow graph for the
setIncludes method in Figure 1. The CFG nodes in the
clone region are colored in gray. There is one entry edge
and two exit edges of the clone. Each node is labeled with
variables defined and used in the corresponding statement.

region is labeled with <entry> and the two edges exiting the
clone region are labeled with <exit1> and <exit2>.
There are two goals in this step with respect to identify-

ing variables referenced by clones. First, we need to identify
the variables used by the clone but not defined in the re-
cipient context so we can port their declarations in Phase
II to avoid compilation errors. Second, we need to decide
the data flowing into and out of the clone so we can insert
stub code to populate values between corresponding vari-
ables in Phase III. Both goals are achieved by capturing the
consumed variables at the entry(s) of the clone region and
the affected variables at the exit(s) of the clone region in
the control flow graph. A variable is consumed by a clone
if it is used but not defined within the clone and a variable
is affected by a clone if its value is potentially updated by
the clone. The consumed variables are also associated with
the data flowing into the clone and the affected variables are
associated with the potentially updated data flowing out of
the clone.

Grafter performs a combination of def-use analysis and
scope analysis to identify the consumed and the affected
variables. We implement an AST visitor to keep track of the
definitions, uses, and the block scope in both the donor and
recipient programs. In Figure 4, each CFG node is labeled
with the variables defined and used within the corresponding
statement. For example, the def set of the Assign node in
Figure 4 includes tokens because tokens is declared in the
corresponding statement, line 11 in Figure 1. Figure 4 does
not show the scope of individual variables but we associate
each variable with the range of its block as its scope and
where each variable is accessible. For example, the scope of
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Grafted Clone (Inserted)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.3: Grafter grafts the clone in Delete (lines 19-24) in place of the original clone

in Copy (lines 13-18) for test reuse. Grafter inserts stub code (highlighted in yellow).

bug types via static analysis [111]: renaming mistakes, control construct inconsistency, and

conditional predicate inconsistency. Accidentally replacing the separator does not belong to

any of the pre-defined cloning bug types.

To reuse the same test testCopy for Delete, Grafter grafts the clone from Delete in

place of the original clone in Copy, as shown in Figure 4.3. As the grafted code uses an

undefined variable excludes, Grafter also ports its declaration to Copy.java. Grafter

ensures that the grafted clone receives the same input data by populating excludes with

the value of includes (lines 8-10) and transfers the value of excludes back to includes

(lines 27-28). Therefore, the value of excludes can flow into the same assertion check of

the original test. Additional stub code generated by Grafter is highlighted in yellow in

Figure 4.3.

After grafting, Grafter then runs testCopy on both clones and finds that the test now

fails on Delete, because the string is not split properly. To help Alice further diagnose

failure symptoms, Grafter shows that tokens has a list { "src/*.java", "test/*.java"}
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in Copy but { "src/*", "java, test/*", "java" } in Delete due to a wrong split. Grafter

also shows that this difference has propagated to corresponding variables includes and

excludes.

4.3 Automated Code Transplantation and Differential Testing

Grafter takes a clone pair and an existing test suite as input and grafts a clone from the

donor to the recipient to make the test(s) of the recipient executable for the donor. A donor

program is the source of grafting and a recipient program is the target of grafting. Grafter

does not require input clones to be identical. Clones could be the output of an existing clone

detector [109, 121] or be supplied by a human. For example, lines 6-15 in setIncludes and

lines 6-15 in setExcludes are clones found by Deckard [111] in Figure 4.1. Delete.java is the

donor program and Copy.java is the recipient program, as Alice wants to reuse the test of

Copy.java for Delete.java.

Grafter works in four phases. Grafter first analyzes variations in local variables, fields,

and method call targets referenced by clones and their subroutines (Phase I). It also matches

corresponding variables at the entry and exit(s) of clones, which is used for generating stub

code and performing differential testing in later phases. Grafter ports the donor clone

to replace its counterpart clone and declares undefined identifiers (Phase II). To feed the

same test input into the grafted clone, Grafter populates the input data to newly ported

variables and transfers the intermediate output of the grafted clone back to the test for

examination (Phase III). Finally, it runs the same test on both clones and compares test

outcomes and the intermediate states of corresponding variables at the exit(s) of clones. We

use Figure 4.1 as a running example throughout this section.

4.3.1 Variation Identification

The goal of Phase I is to identify mappings between method call targets, local variables, and

fields at the entry and exit(s) of each clone. Grafter leverages inter-procedural analysis

to find identifiers referenced by each clone and its subroutines. It then determines which

68



referenced identifiers are defined in the donor but not in the recipient.

There are three goals with respect to finding variable mappings at the entry and exit(s)

of each clone. First, we need to identify variables used by the donor clone but not defined

in the recipient clone, so Grafter can port their declarations in Phase II to ensure type

safety and avoid compilation errors. Second, we need to decide the data flowing in and out

of the clone at the entry and exit(s), so we can insert stub code to populate values between

corresponding variables in Phase III. Third, we compare the states of corresponding variables

at clone exit(s) for fine-grained differential testing in Phase IV.

These goals are achieved by capturing the consumed variables at the entry of the clone

region and the affected variables at the exit(s) of the clone region in the control flow graph.

A variable is consumed by a clone if it is used but not defined within the clone. A variable

is affected by a clone if its value could be potentially updated by the clone. The consumed

variables are associated with the data flowing into the clone and the affected variables are

associated with the updated data flowing out of the clone. Grafter performs a combination

of def-use analysis and scope analysis to identify consumed and affected variables.

Given a clone F and its container method M and class C, consumed variables at the

clone’s entry can be approximated:

Consumed(F,M,C) = (Def (C) ∪Def (M) \Def (F )) ∩ Use(F )

Similarly, given a clone F , affected variables at an exit point P can be approximated as

following:

Affected(F ,P) = Use(F ) ∩ In-Scope(P)

To assist the derivation of consumed and affected variables, we define three functions.

Def(F ) returns the set of variables declared within the fragment F . Use(F ) returns the set

of variables used within the fragment. In-Scope(P ) returns the set of variables at a program

point P . The set of affected variables is an over-approximation of the variables that could

be updated by a clone at runtime. This set may include variables only read but not mutated
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by the clone. However, it is guaranteed to include all variables potentially updated by the

clone, thus capturing all data flowing out of it.

Consider setIncludes in Figure 4.1. Figure 4.4 shows an inter-procedural control flow

graph. Nodes represent corresponding program statements, solid edges represent control

flow, and dashed edges represent method invocation. The gray nodes in Figure 4.4 represent

the clone region F (line 6 and lines 11-15 in Figure 4.1) in setIncludes. The CFG edge

entering the clone region is labeled with <entry> and the two edges exiting the clone region

are labeled with <exit1> and <exit2>. Each CFG node is labeled with the variables defined

and used within the corresponding statement. For example, Def(F ) includes tokens and

tok. Variable patterns is not included because it is declared as a method parameter in

Figure 4.1, which is before the clone region F (line 6 and lines 11-15). Use(F ) returns

includes, patterns, tokens, and tok. The figure does not show the scope of individual

variables but we associate each variable with its scope and visibility. For example, In-

Scope(< exit2 >) returns patterns and tokens. Putting these definitions together, the

resulting set of consumed variables at the entry of the clone is {includes, patterns}. The

resulting sets of affected variables at the two exit edges are the same: {includes, patterns}.

By comparing the two sets of consumed variables, {includes, patterns} and {excludes,

patterns} at the entry of clones using name similarity, we find that includes and excludes

are corresponding variables. Therefore, Grafter knows that it must port the declaration

statement of the field excludes. The name similarity is computed using the Levenshtein dis-

tance [1], i.e., the minimum number of single-character insertions, deletions, or substitutions

required to change one string into the other. The lower the distance is, the more similar

two field names are. This mapping information is used to guide the process of redirecting

data into the grafted clone and back to the recipient in Phase III. For example, Grafter

populates the value of includes to excludes at the entry and transfers the updates on

excludes back to includes at the exit (to be detailed in Section 4.3.3).
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Start

If

...

def = {}
use = {patterns}

Consumed = (Def(Copy)∪Def(setIncludes) \ Def(clone))∩Use(clone) 
                    = {includes, patterns}
Affectedexit1 = Use(clone) ∩ In-Scope(<exit1>) = {includes, patterns}

Affectedexit2 = Use(clone) ∩ In-Scope(<exit2>) = {includes, patterns}

Assign

For

call

End

Start

call

End

def = {tokens}
use = {patterns}

def = {tok}
use = {tokens}

def = {}
use = {includes, 
tok}

def = {patterns}
use = {}

def = {}
use = {set}

<entry>

<exit1>

<exit2>

setIncludes:

addPattern:

Def(Copy) = {includes}
Def(setIncludes) = {patterns, tokens, tok}
Def(clone) = {tokens, tok}
Use(clone) = {includes, patterns, tokens, tok}
In-Scope(<exit1>) = {includes, patterns} 
In-Scope(<exit2>) = {includes, patterns} 

Copy.class

IncludePatternSet.class

Figure 4.4: An inter-procedural control flow graph for the setIncludes method in Figure 4.1.

The CFG nodes in the clone region are colored in gray. There is one entry edge and two

exit edges of the clone.

4.3.2 Code Transplantation

Simply copying and pasting a clone in place of its counterpart in the recipient could lead to

compilation errors due to variations in clone content. Phase II applies five transplantation

rules to ensure type safety during grafting. The rules are sound in the sense that the resulting

grafted code is guaranteed to compile. To ensure type safety, our rules do not convert objects,

if their types are not castable or structurally equivalent. We conservatively choose not to

graft clones referencing such unrelated types and give the user a warning instead.

Rule 1. Handle Variable Name Variations. If the grafted clone uses a variable un-

defined in the recipient, Grafter moves its definition from the donor to the recipient.

Consider Figure 4.1 where setIncludes and setExcludes use different variables, includes

and excludes. When grafting the clone in setExcludes to setIncludes, Grafter adds

the definition of excludes in line 3 of Copy.java in Figure 4.3. In particular, if the grafted

clone uses a variable that has already been defined with a different type in the recipient,

Grafter still ports the definition but renames it and all its references by appending graft
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to avoid a naming conflict.

Rule 2. Handle Method Call Variations. If the grafted clone calls a method undefined

in the recipient, Grafter ports its definition from the donor to the recipient. Similar to the

rule above, Grafter renames it if it leads to a naming conflict.

Rule 3. Handle Variable Type Variations. If the grafted clone uses a different type

compared with its counterpart, Grafter generates stub code to convert the object type

to the one compatible with the recipient. For example, includes and excludes in Fig-

ure 4.1 have different types, IncludePatternSet and ExcludePatternSet. Simply assigning

includes to excludes leads to a type error. Thus, Grafter preserves the original value of

excludes in line 8, creates a new ExcludePatternSet instance in line 9, and populates the

field sets from the IncludePatternSet object to the ExcludePatternSet object in line 10

in Figure 4.3.

Rule 4. Handle Expression Type Variations. The data type of an expression can

be different based on the variables, operators, and method targets used in the expression.

Such variation can cause type incompatibility in the returned object if it appears in the

return statement. Grafter first decomposes the return statement return X; into two

statements, one storing the expression value to a temporary variable Type temp = X; and

the other returning the temporary value return temp;. Grafter applies the Variable Type

Variation rule above on temp to convert its type to a compatible type in the recipient.

Rule 5. Handle Recursive Calls. If both container methods in the donor and recipient

have recursive calls in the clone region, Grafter updates the recursive call targets in the

grafted clone.

4.3.3 Data Propagation

In medicine, surgeons reattach blood vessels to ensure the blood in the recipient flows cor-

rectly to the vessels of the transplanted organ. Similarly, Grafter adds stub code to ensure

that (1) newly declared variables consume the same input data as their counterparts in the

recipient and (2) the updated values flow back to the same test oracle.
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Algorithm 2: Heuristics for transfering variable values
Input : Let v1 and v2 be a pair of mapped variables. In this algorithm, each variable symbol is an abstraction, containing

the name, type, and field information, which guides the generation of stub code.

Output: Let code be the stub code to tranfer the value of v1 to v2. It starts with an empty string and ends with a

sequence of statements generated using a few heuristics.

Algorithm transfer(v1, v2)

1 code := “”

2 if v1.name == v2.name then

3 return “”

4 if v1.type == v2.type or v1.type is castable to v2.type then

5 return “v2.name = v1.name;”

6 if v1.type structurally equivalent to v2.type then

7 code + = “v2.name = new v2.type();”

8 match := stableMatching (v1.fields, v2.fields)

9 foreach fi, fj in match do

10 code + = transfer (fi, fj)

11 return code

Procedure stableMatching(s1, s2)

12 match := ∅

13 unmatch := s2

14 while unmatch is not empty do

15 f2 := next field in unmatch

16 foreach f1 in s1 do

17 if f1.type == f2.type or f1.type is castable to f2.type or f1.type is structurally equivalent to f2.type then

18 if f1 ∈ match.keys then

19 f′2 := match.get(f1)

20 d1 := levenshteindistance (f1.name, f2.name)

21 d2 := levenshteindistance (f1.name, f′2.name)

22 if d1 < d2 then

23 match.put(f1, f2)

24 unmatch.add(f′2)

else

25 match.put(f1, f2)

26 return match

Given each mapped variable pair v1 and v2 in Phase II, Grafter generates stub code to

propagate the value of v2 to v1 at the entry of the clone and to transfer the updated value of

v1 back to v2 at the exit. In Algorithm 2, the main function, transfer, takes two variables

v1 and v2 as input and produces a sequence of program statements for data propagation. The

symbols v1 and v2 in Algorithm 2 abstract their variable name, type, and field information.
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Heuristic A. Given two variables v1 and v2 with the same name and type, there is no need

to propagate the value from v1 to v2. In Figure 4.1, both clones use the method parameter

patterns and the references to patterns in the grafted code are automatically resolved to

the same parameter in the recipient. Algorithm 2 returns an empty string in this case.

Heuristic B. Given two variables v1 and v2 of the same type or castable types due to

subtyping, the value of v2 can be directly assigned to v1 without inducing type casting

errors. Algorithm 2 adds an assignment statement.

Heuristic C. Given v1 of type t1 and v2 of type t2, if t1 and t2 are structurally equivalent,

we propagate corresponding sub fields from v2 to v1. Two types are structurally equivalent

if (1) they have the same number of fields, and (2) for each field in one type, there exists a

field in another type that has either the same or structurally equivalent type. For example,

IncludePatternSet and ExcludePatternSet are structurally equivalent because both have

only one sub-field set of type Set<String> in Figure 4.1. To propagate data at the clone

entry, Grafter first preserves the original ExcludePatternSet object in line 8, creates

a new ExcludePatternSet instance in line 9, and then populates the field set from the

IncludePatternSet’s set field in line 10 in Figure 4.3. At the clone exit, the updates on

excludes are transferred to includes by setting field set in line 27 and the original reference

is restored to excludes in line 28.

Because Grafter allows the fields of structurally equivalent types to have different names

and orders, Grafter identifies n-to-n sub-field matching. This problem can be viewed

as a stable marriage problem (SMP) and is solved using the Gale-Shapley algorithm [3].

The stableMatching procedure in Algorithm 2 establishes field mappings based on type

compatibility and name similarity. The stableMatching procedure takes two sets of fields,

s1 and s2 as input. It creates an empty map match and adds all fields in s2 to unmatch. For

each field f2 in unmatch, Grafter compares it with any field f1 in s1. If f1 and f2 have the

same or structurally equivalent types and their name similarity is greater than the current

match f1 to f′2 (if any), f2 is a better match than f′2. Grafter puts a mapped pair (f2, f1)

to match and adds f′2 to unmatch. This process continues until unmatch is empty.
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Heuristic D. If a data type or its field is an array or a collection such as List or Set of the

same or structurally equivalent type, Grafter synthesizes a loop, in which each iteration

populates corresponding elements using Algorithm 2.

4.3.4 Fine-grained Differential Testing

Grafter supports behavior comparison at two levels.

Test Level Comparison. Grafter runs the same test on two clones and compares the

test outcomes. If a test succeeds on one clone but fails on the other, behavior divergence is

noted.

State Level Comparison. Grafter runs the same test on two clones and compares the

intermediate program states for affected variables at the exit(s) of the clones. Grafter

instruments code clones to capture the updated program states at the exit(s) of clones.

Grafter uses the XStream library1 to serialize the program states of affected variables in

an XML format. Then it checks if two clones update corresponding variables with the same

values. State-level comparison is more sensitive than test outcome comparison.

Grafter is publicly available with our experiment dataset.2 Its GUI allows users to

experiment with clone grafting and revert edits after examining runtime behavior. Therefore,

the inserted stub code is not permanent and does not need to be comprehended by users.

Using GUI, users can easily discard tests that do not preserve the desired semantics.

4.4 Tool Support and Demonstration

This section explains how a user may use Grafter by demonstrating UI features and cor-

responding screen snapshots. A user can load clones found by an off-the-shelf clone detector

and mark clones for further runtime behavior investigation by associating clones with the

test coverage. A user can also experiment with grafting and inspect the stub code generated

1http://x-stream.github.io/

2http://web.cs.ucla.edu/∼tianyi.zhang/grafter.html
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① detect clones with clone detection tools or load clones manually

③ find test cases for loaded clones

② inspect clones with program differencing

⑤ examine the 
behavioral differences 
between clones

④ inspect the grafted clone

⑦ Test cases that exercise this clone

Figure 4.5: The screenshot of Grafter

for grafting before running differential testing. Grafter visualizes the results of differential

testing at the level of test outcomes and program states. Grafter is built on top of an

open-source program differencing tool, JMeld.3 To run Grafter, a user needs to first spec-

ify the source and test folders in a project as well as the build commands in a configuration

file. Grafter is run as a stand-alone Java desktop application.

1 java -jar grafter.jar /path/to/your/config/file

Step 1: Load Clones to Grafter

To ease the effort of detecting clones in a large code base, Grafter integrates two widely used

off-the-shelf clone detectors, Deckard and Simian (¬ in Figure 4.5). Deckard parses source

code to abstract syntax trees (ASTs) and detects similar code via tree comparison [109],

while Simian is a commercial tool that detects duplicated code via text comparison [2]. A

user can also specify the clones of interest in an XML file and load these clones manually by

clicking Load.

3https://github.com/albfan/jmeld
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As noted by previous studies [44,201], clone detection tools may emit a large number of

uninteresting clones—clones that are textually similar but are trivial to investigate. Grafter

proactively detects such trivial clones using several heuristics, so that a user can easily ignore

these clones if: (1) the clones are in comments or declaration statements such as a sequence

of field declarations, (2) clones are not syntactically complete, or (3) clones are from the

same method. Grafter also marks clones in test files, since Grafter aims to contrast the

runtime behavior of clones in functional code.

Step 2: Inspect Clones Side-by-Side

A user can inspect the textual differences of loaded clones by right-clicking a clone group

and selecting Compare ( in Figure 4.5). We customized JMeld to compute the differences

between only the clone regions in two Java files. So a user only needs to focus on the clone

regions, instead of the entire file. Each clone in the group is named in the format of “(start

line number, end line number)” by default. A user can update the clone region or rename it

with the method name by double-clicking its label.

During the manual inspection, if a user considers a clone group to be trivial, she can filter

out the clone group by right-clicking the group label and selecting Exclude. Similarly, if a

user finds a clone group is mistakenly excluded, she can add the group back by right-clicking

the group label and selecting Include.

Step 3: Find Test Cases of Clones

In a large project with many clones and test files, a user may find it difficult to manually

locate the corresponding test cases for each detected clone. Grafter facilitates test coverage

analysis by automatically locating relevant test cases for each clone. Grafter instruments

each clone to log its call stack trace and gathers the test cases that appear in the trace.

When a user clicks the Coverage button (® in Figure 4.5), Grafter automatically detects

and updates the test cases that exercise each loaded clone (² in Figure 4.5). Note that

Grafter requires at least one clone in a clone group to be executed by one or more tests in
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order to re-run the same test(s) on its counterpart clones. If none of the clones in a group is

examined by a test case, Grafter is not able to examine their behavior.

Step 4: Experiment with Clone Transplantation

Note that the stub code inserted during grafting is not a permanent edit and does not need

to be comprehended by a developer, since it is temporarily inserted to run the same tests

for differential testing purposes. Nevertheless, Grafter’s GUI allows a user to experiment

with clone grafting and to examine the grafted code. For example, a user can graft the left

clone to replace the right one and view the grafted code in the diff view by clicking Graft

Left in the top menu bar (¯ in Figure 4.5). A user can further test the grafted code by

right-clicking the clone group and selecting Test. The passed test cases will be highlighted

in green, while the failed test cases will be highlighted in red, as shown in Figure 4.6. A user

can undo and redo the previous grafting by clicking the Undo and Redo buttons on the top

menu bar respectively.

Step 5: Examine Runtime Behavioral Differences

A user can contrast and examine the behavior of clones by right-clicking a clone group and

selecting Compare Test Behavior or Compare State Behavior (° in Figure 4.5). Grafter

handles one pair of clones at a time. If there are more than two clones in a group, Grafter

will compare every pair of clones in the group. The test-level comparison contrasts the test

outcomes, as shown in Figure 4.7. The first column shows the names of test cases. The

second and third columns show whether each clone passes or fails the corresponding test

case. The last column shows the comparison result. Green means both clones are consistent

in terms of test outcomes and red means their test outcomes are different.

The state-level comparison contrasts the internal state values of corresponding variables

in two clones, as shown in Figure 4.8. The first and third columns show the names of

corresponding variables, and the second and fourth columns show the variable values in the

format of XML. Grafter prints the value of an object in XML using XStream. A user
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original clone

graft

grafted clone

Stub code to propagate the 
input data at the entry

Stub code to propagate the output 
data at the two exits

Test the grafted clone

Figure 4.6: Experimenting the clone transplantation. A user can view and test the grafted

clone. Green means the test succeeds. Red means the test fails.

can view the complete XML representation of an object by hovering the mouse over the

corresponding cell.

Figure 4.7: The test outcome level behavior comparison for clones

Figure 4.8: The state-level behavior comparison for clones. A user can hover the mouse to

view the complete XML representation of an object.
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4.5 Evaluation

Our evaluation investigates three research questions.

• RQ1: How successful is Grafter in transplanting code?

• RQ2: How does Grafter compare with a static cloning bug finder in terms of detecting

behavioral differences?

• RQ3: How robust is Grafter in detecting unexpected behavioral differences caused

by program faults?

We use Deckard [109] to find intra-method clones (i.e., clone fragments appearing in

the middle of a method) from three open-source projects. Apache Ant is a software build

framework. Java-APNS is a Java client for the apple push notification service. Apache XML

Security is a XML signature and encryption library. Ant and XML Security are well-known

large projects with regression test suites. In Table 4.1, LOC shows the size in terms of lines of

code. Test# shows the number of JUnit test cases. Branch Coverage and Statement Coverage

show branch and statement coverage respectively, both measured by JaCoCo.4 Pair# shows

the number of selected clone pairs.

Because Grafter’s goal is to reuse tests for nonidentical clones, we include clones meeting

the following criteria in our dataset: (1) each clone pair must have at least one clone exercised

by some tests, (2) clones must not be identical, because grafting is trivial for identical clones,

(3) each clone must have more than one line, (4) each clone must not appear in uninteresting

areas such as import statements and comments. These are not restrictions on Grafter’s

applicability, rather we target cases where Grafter is designed to help (e.g., tests exist for

reuse) and where grafting clone is hard (e.g., clones with variations and without well-defined

interfaces).
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Table 4.1: Subject Programs

Subject LOC Test# Branch Coverage Satement Coverage Clone Pair#

ant-1.9.6 267,048 1,864 45% 50% 18

Java-APNS-1.0.0 8,362 103 59% 67% 7

xmlsec-2.0.5 121,594 396 59% 65% 27

4.5.1 Grafting Capability

We use Grafter to graft clones in each pair in both directions. A pair of clones is con-

sidered successfully grafted if and only if there is no compilation error in both directions.

Table 4.2 shows 52 clone pairs in our dataset. Column Type shows types of code clones in

our dataset based on a well-known clone taxonomy [59,201]. Type I clones refer to identical

code fragments. Type II clones refer to syntactically identical fragments except for varia-

tions in names, types, method call targets, constants, white spaces, and comments. Type

III clones refer to copied code with added and deleted statements. Because variations in

variable names, types, method calls, and constants are all grouped as Type II clones, we

enumerate individual kinds of variations in column Variation. Since grafting identical code is

trivial, our evaluation focuses on Type II and III clones not to artificially inflate our results.

Column Tested indicates whether both clones are covered by an existing test suite (i.e.,

full) or only one of the two is covered (i.e., partial). Success shows whether Grafter success-

fully grafts clones without inducing compilation errors. ∆ shows lines of stub code inserted

by Grafter and Prpg shows the kinds of heuristics applied for data propagation, described

in Section 4.3.3. Branch and Stmt show the branch and statement coverage over the cloned

regions in each pair before and after test reuse respectively.

Grafter successfully grafts code in 49 out of 52 pairs (94%). In 3 cases, Grafter re-

jects transplantation, because it does not transform objects, unless they are hierarchically

related or structurally equivalent to ensure type safety. In Table 4.2, the corresponding rows

are marked with 7 and —. On average, 6 lines of stub code is inserted. Transplantation

Rule#1 is needed to define used but undefined variables in grafted code to handle variable

4http://www.eclemma.org/jacoco/

81

http://www.eclemma.org/jacoco/


Table 4.2: Evaluation Benchmark

ID Type Variation Tested
Graft Branch Stmt Behavior Comparison Mutation

Success ∆ Prpg Before After Before After Test State Jiang Test State Jiang

1 II var, call full X 9 B 75% 75% 100% 100% 0/8 0/4 7 10/28 12/28 12/28
2 II var full X 8 B 100% 100% 100% 100% 0/10 0/2 7 4/4 4/4 4/4
3 II var full X 8 B 50% 50% 75% 75% 0/1 0/2 7 2/4 2/4 4/4
4 II var, call full X 9 B 50% 50% 75% 75% 0/1 0/3 7 2/6 2/6 6/6
5 II var, call full X 10 A, B 100% 100% 100% 100% 0/13 2/7 7 4/8 4/8 8/8
6 II var full X 6 B 100% 100% 100% 100% 0/38 2/3 7 12/12 12/12 0/12
7 II var full X 23 B 100% 100% 100% 100% 0/38 5/5 7 20/22 20/22 6/22
8 II var full X 8 B 50% 50% 88% 88% 0/36 2/2 7 2/6 6/6 4/6
9 II type, call full X 16 A 33% 66% 50% 80% 2/3 4/7 7 — — —
10 II var full X 3 A, B 88% 100% 93% 100% 0/37 8/9 7 13/30 30/30 12/30
11 II var full X 7 B 100% 100% 100% 100% 0/14 3/5 7 4/4 4/4 4/4
12 II call full X 0 B 50% 50% 75% 75% 60/157 3/4 7 — — —
13 II var, type, call, lit full X 6 A, C 63% 63% 100% 100% 1/1 10/11 7 — — —
14 II var, type, call, lit full X 6 A, C 63% 63% 100% 100% 1/1 10/11 7 — — —
15 II type, call full 7 — — 33% — 45% — — — — — — —
16 II var, type, call full X 4 A, B 100% 100% 100% 100% 15/45 2/7 7 — — —
17 II var, type full X 3 B 25% 25% 14% 14% 54/54 4/5 X — — —
18 II var full X 6 B 75% 100% 75% 100% 0/116 0/3 7 4/6 4/6 0/6
19 II lit full X 0 A 25% 25% 17% 17% 0/1 1/4 7 2/6 2/6 6/6
20 II type, lit full X 0 A 66% 66% 80% 80% 4/4 2/2 7 — — —
21 II lit full X 0 A 75% 75% 83% 83% 0/2 0/4 7 2/6 2/6 4/6
22 II var full X 9 B 50% 50% 71% 71% 0/307 0/5 7 2/24 4/24 6/24
23 II call full X 0 A 100% 100% 100% 100% 160/168 2/3 7 — — —
24 II type, lit full X 11 A, C, D 70% 70% 77% 77% 1/1 1/4 7 — — —

Type II (full)
23/24
(96%)

7 65% 68% 80% 84%
9/23

(39%)
16/23
(70%)

1/23
(4%)

83/166
(50%)

108/166
(65%)

76/166
(46%)

25 II var partial X 6 B 50% 100% 50% 100% 0/1 1/29 7 2/4 4/4 4/4
26 II var partial X 6 B 50% 100% 50% 100% 0/1 1/29 7 2/4 3/4 4/4
27 II var partial X 6 B 50% 100% 50% 100% 0/1 1/29 7 3/4 4/4 0/4
28 II lit partial X 0 A 25% 50% 42% 84% 0/1 2/2 7 4/12 12/12 4/12
29 II var partial X 6 B 50% 100% 50% 100% 0/4 1/3 7 2/2 2/2 0/2
30 II var, type partial X 6 B 50% 100% 50% 100% 0/4 1/3 X 2/2 2/2 1/2
31 II var, type partial X 6 B 50% 100% 50% 100% 0/4 1/3 X 2/2 2/2 1/2
32 II var partial X 3 A, B 50% 100% 50% 100% 0/5 0/1 7 2/2 2/2 2/2
33 II var, lit partial X 3 B 25% 50% 50% 100% 0/1 1/2 7 0/8 2/8 2/8
34 II type, call partial X 0 A 25% 50% 50% 100% 0/21 5/7 7 6/20 7/20 4/20
35 II var, type, call partial 7 — — 50% — 50% — — — — — — —
36 II var, type, call, lit partial 7 — — 25% — 50% — — — — — — —
37 II var, lit, call partial X 4 B 25% 50% 50% 100% 2/2 1/2 7 — — —
38 II var, lit partial X 3 B 25% 50% 50% 100% 0/1 1/2 7 1/8 6/8 2/8

Type II (partial)
12/14
(86%)

4 34% 68% 49% 98%
1/12
(8%)

11/12
(92%)

2/12
(17%)

26/68
(38%)

46/68
(68%)

24/68
(36%)

Type II Total
35/38
(92%)

6 59% 68% 73% 87%
10/35
(29%)

27/35
(77%)

3/35
(9%)

109/234
(47%)

154/234
(66%)

100/234
(43%)

39 III call, extra full X 2 A 100% 100% 100% 100% 10/21 4/6 X 22/26 22/26 10/26
40 III call, lit, extra full X 33 A 38% 38% 68% 68% 1/3 2/8 X — — —
41 III type, extra full X 0 A 70% 70% 100% 100% 0/4 6/11 X 18/30 23/30 8/30
42 III var, extra full X 0 A 51% 68% 70% 81% 33/156 8/13 X — — —

Type III (full)
4/4

(100%)
9 54% 65% 77% 84%

3/4
(75%)

4/4
(100%)

4/4
(100%)

40/56
(71%)

45/56
(80%)

18/56
(32%)

43 III var, call, extra partial X 32 B 36% 64% 50% 88% 0/3 1/5 X 15/29 29/29 7/29
44 III call, extra partial X 8 A 33% 66% 43% 86% 2/2 3/8 X — — —
45 III var, extra partial X 10 B 20% 40% 20% 40% 14/14 2/3 X — — —
46 III var, extra partial X 6 B 25% 50% 25% 50% 14/14 2/3 X — — —
47 III call, extra partial X 1 A 25% 50% 46% 100% 0/2 4/5 X 3/38 3/38 0/38
48 III extra partial X 1 A 25% 50% 30% 70% 0/4 1/4 X 0/4 0/4 2/4
49 III var, lit, extra partial X 4 A, B 17% 50% 30% 70% 4/4 4/4 7 — — —
50 III var, lit, extra partial X 4 A, B 17% 50% 30% 70% 4/4 5/5 X — — —
51 III var, lit, extra partial X 1 A 17% 50% 30% 70% 4/4 5/5 X — — —
52 III lit, extra partial X 3 A 17% 50% 30% 70% 1/1 3/3 X — — —

Type III (partial)
10/10

(100%)
7 27% 49% 36% 68%

7/10
(70%)

10/10
(100%)

9/10
(90%)

18/71
(25%)

32/71
(45%)

9/71
(13%)

Type III Total
14/14

(100%)
8 39% 60% 56% 81%

10/14
(71%)

14/14
(100%)

13/14
(93%)

58/127
(46%)

77/127
(61%)

27/127
(21%)

Type II & III Total
49/52
(94%)

6 50% 72% 67% 83%
18/47
(38%)

39/47
(83%)

14/47
(29%)

167/361
(46%)

231/361
(64%)

127/361
(35%)
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name variations in 38 cases. Furthermore, Heuristic A is applied in these cases to ensure

that the input data is properly propagated from a matched variable in the target location

to the newly defined variable. In 3 of these 38 cases, Transplantation Rule#3 is successfully

applied to convert objects with different types to ensure type safety, since matched variables

have different types between clones. Heuristic C is further applied in these cases to propa-

gate data between corresponding subfields among these types. In 3 cases, Transplantation

Rule#2 is needed to port method definitions to resolve compilation errors due to method

call variations between clones. In 11 cases, Transplantation Rule#4 is needed to introduce

temporary variables to handle expression type variations between code clones. In 2 cases,

Transplantation Rule#5 is applied to handle recursive calls. Heuristic D is applied to syn-

thesizes a loop to propagate data between two arrays of structurally equivalent objects in

Pair#24. Even when the mapped variables have the same type and name, additional stub

code may be required, when one clone references extra identifiers undefined in another con-

text (e.g., Pairs#47, 48, 52). In some cases, the generated stub code is over 30 lines long,

indicating that näıve cut and paste is definitely inadequate for ensuring type safety and data

transfer. Grafter automates this complex stub code generation.

By reusing tests between clones, Grafter roughly doubles the statement coverage and

the branch coverage of partially tested clone pairs. For partially tested Type II clone pairs,

statement coverage improves from 49% to 98% and branch coverage improves from 34% to

68%. For partially tested Type III clone pairs, we observe similar improvement (36% to

68% and 27% to 49%). For fully tested clones pairs, statement coverage is still improved by

augmenting tests.

4.5.2 Behavior Comparison Capability

We use Grafter to detect behavioral differences on the 49 pairs of successfully grafted clones.

We hypothesize that by noticing fine-grained behavior differences at runtime, Grafter can

detect potential cloning bugs more effectively than Jiang et al. [111] that detect three pre-

defined bug types:
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if(l_stride!=NULL){

mps_cdiv_q(X1,X1, l stride ->value);

}

if(l_stride!=NULL){

mps_cdiv_q(X1,X1, r stride ->value);

}

(a) Renaming mistake.

if(cmd type==READ M2){
msgbuf[xa_count*3]=0;

msg(DBG_XA1, ...);

}

for(i=0;i<count;i++){
msgbuf[i*3]=0;

msg(DBG_SQ1, ...);

}

(b) Control-flow construct inconsistency.

if(length>=9&& strcmp (

buffer,"EESOXSCSI",9){

buffer+=9;

length+=9;

}

if(length>=11&& strncmp (

buffer,"CUMANNASCSI2"){

buffer+=11;

length+=11;

}

(c) Conditional predicate inconsistency.

Figure 4.9: Three examples of cloning bugs by Jiang et al.

• Rename Mistake: in Figure 4.9a, the right clone performs a null check on l stride

but then dereferences r stride due to a renaming mistake.

• Control-flow Construct Inconsistency: in Figure 4.9b, the left clone is enclosed in an

if statement, while the right clone is enclosed in a for loop.

• Conditional Predicate Inconsistency: in Figure 4.9c, though both clones are in if

branches, the if predicates are different: one calls strncmp which takes three argu-

ments, while the other calls strcmp which takes two arguments.

In Table 4.2, Behavior Comparison shows whether Grafter detects behavioral differences

in each clone pair. Test shows how many tests exhibit different test outcomes. State shows

how many variables exhibit state differences using Grafter’s state-level comparison. Jiang

shows whether Jiang et al. detect cloning bugs Xor not 7.

Grafter detects test-level differences in 20 pairs of clones and detects state-level differ-

ences in 41 pairs. On the other hand, Jiang et al. detect differences only in 16 pairs because

they ignore behavioral differences at runtime caused by using different types and calling dif-
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ferent methods. For example, pair#9 from Apache Ant in Figure 4.11 uses different object

types, TarFileSet and ZipFileSet. Given the same input variables p and o, the clones

enter different branches due to different runtime type checks (i.e., instanceof predicates).

Because these runtime checks are syntactically isomorphic and there are no renaming mis-

take, Jiang et al. report no inconsistency. 13 of 15 renaming mistakes detected by Jiang et

al. are in Type III clones, because Jiang et al. compare unique identifiers in each clone to

detect renaming mistakes and added statements often lead to extra variable counts. In other

words, by definition, they consider almost all Type III clones as cloning bugs.

Figure 4.10a shows that state-level difference is noted in 84% of pairs, while test outcome

difference is noted in 41% of pairs. State-level comparison being more sensitive than test-

level comparison is expected, because some program states are not examined by test oracle

checking. As Grafter focuses its comparison scope to only affected variables, the size of

state-level comparison is manageable, three variables on average.

8
16%

21
43%

20
41%

No Differences

State Differences Only

Test and State Differences

(a) Grafter

0
Type II Type III

Apache Ant

33
67%

1
2%

15
31%

No Cloning Bug

Inconsistent Conditional Predicate

Renaming Mistake

(b) Jiang et al.

Figure 4.10: Comparison between Grafter and Jiang et al.
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1 File: /org/apache/tools/ant/types/TarFileSet.java

2 protected AbstractFileSet getRef(Project p){

3 dieOnCircularReference();

4 Object o = getRefid().getReferencedObject(p);

5 if(o instanceof TarFileSet){

6 return (AbstractFileSet)o;

7 }else if (o instanceof FileSet){

8 TarFileSet zfs = new TarFileSet((FileSet)o);

9 configureFileSet(zfs);

10 return zfs;

11 }else{

12 throw new Exception(..);

13 }

14 }

1 File: /org/apache/tools/ant/types/ZipFileSet.java

2 protected AbstractFileSet getRef(Project p){

3 dieOnCircularReference();

4 Object o = getRefid().getReferencedObject(p);

5 if(o instanceof ZipFileSet){

6 return (AbstractFileSet)o;

7 }else if (o instanceof FileSet){

8 ZipFileSet zfs = new ZipFileSet((FileSet)o);

9 configureFileSet(zfs);

10 return zfs;

11 }else{

12 throw new Exception(..);

13 }

14 }

Figure 4.11: Type II clones (Pair#9) where Grafter detects behavioral differences and

Jiang et al do not.

4.5.3 Fault Detection Robustness

To systematically assess the robustness of Grafter in detecting unexpected behavioral dif-

ferences caused by program faults, we use the Major mutation framework to inject 361

mutants into 30 pairs of clones. The 19 pairs where the test-level comparison already ex-

hibits differences without adding mutants are marked with — and excluded from the study

in order not to over-inflate our results. Each mutant represents an artificial cloning bug and

it is injected to only one clone in each pair. We then use Grafter to check whether behav-

ioral difference is exhibited at runtime. Table 4.3 shows eight kinds of mutants injected by

Major. A mutant is detected by Grafter’s test-level comparison, if Grafter exposes test

outcome differences in one or more tests after injecting the mutant. A mutant is detected by

Grafter’s state-level comparison, if there is an affected variable with a state value different

from its corresponding variable’s state value.

In Table 4.2, columns in Mutation show the mutation experiment results. Test shows

how many mutants are detected using Grafter’s test-level comparison. For example, 10/28

indicates that 10 out of 28 mutants are detected using Grafter’s test-level comparison. Sim-

ilarly, State shows how many mutants are detected using Grafter’s state-level comparison

while Jiang shows how many mutants are detected by Jiang et al.

Overall, Grafter detects 167 mutants (46%) using the test-level comparison and 231

mutants (64%) using the state-level comparison. This finding that the state-level comparison
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Table 4.3: 8 kinds of mutants injected by Major

Operator Description Example

AOR Arithmetic operator replacement a+ b→ a− b
LOR Logical operator replacement a ∧ b→ a|b
COR Conditional operator replacement a ∨ b→ a&&b

ROR Relational operator replacement a == b→ a> = b

SOR Shift operator replacement a>>b→ a<<b

ORU Operator replacement unary ¬a→∼ a

STD
Statement deletion operator:

delete (omit) a single statement

foo(a, b) →
// foo (a, b)

LVR

Literal value replacement:

replace by a positive value,

a negative value or zero

0 → 1

0 → -1

is more sensitive to seeded mutants than the test-level comparison is consistent with the

literature of strong and weak mutation testing [105,117,254]. Jiang et al. detect 127 mutants

(35%) only, as shown in Figure 4.12. Grafter outperforms Jiang et al. by detecting 31%

more mutants at the test level and almost twice more at the state level. Its mutant detection

ability is similar for both Type II and III clones.

Figure 4.13 shows Grafter is less biased than Jiang et al. when detecting different kinds

of mutants. Jiang et al. detect 60% of COR mutants and 44% of STD mutants but less than

20% in other mutant types. This is because Jiang et al. only detect three pre-defined types of

cloning bugs—removed statements (STD mutants) often flag renaming mistakes, and COR

mutants flag inconsistent conditional predicate updates. Because many removed statements

do not affect program states examined by test oracles, Grafter’s test-level comparison

detects fewer STD mutants than Jiang et al. Grafter does not detect mutants in eight AOR

mutants, because they are all injected in an untested branch in pair#22. Jiang et al. do not

detect these AOR mutants because they ignore inconsistencies in arithmetic operators. In

summary, our experiment shows that Grafter can complement a static cloning bug finder

via test reuse and differential testing.
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Figure 4.13: Mutant killing ratio for different mutant kinds
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4.6 Threats to Validity

In terms of external validity, since clones in our study are found using an AST-based clone

detector [109], our dataset does not include Type IV clones—functionally similar code with-

out any syntactic resemblance. For Type IV clones, a programmer may need to provide

the correspondence between variables to enable differential testing. In Section 4.5.3, we use

mutants as a replacement for real faults to assess the robustness of Grafter. Recent stud-

ies [30, 119] find a strong correlation between mutants and real faults, so our results should

generalize to real faults.

In terms of internal validity, like other dynamic approaches, Grafter’s capability to

expose behavioral differences is affected by test coverage and quality. If an existing test

covers only some branches within a clone, Grafter may not expose behavioral differences

in uncovered code. However, Grafter is still useful for boosting test coverage through code

transplantation. Grafter’s transplantation is guided by the syntactic resemblance of input

and output variables. Grafter matches variables based on name and type similarity. This

heuristic works well for real-world clones in our evaluation, which can be attributed to the

fact that these clones are intra-project clones and developers in the same project may follow

similar naming conventions. However, manual adjustments may be needed when variables

have significantly different names. Experimentation with cross-project clones and alternative

matching heuristics [54,159] remain as future work.

In terms of construct validity, Grafter conservatively chooses not to graft clones refer-

encing unrelated types—not castable nor structurally equivalent. This limit can be overcome

by allowing programmers to provide user-defined type transformation functions. Grafter

grafts clones rather than tests. Transplanting tests could have the advantage of minimizing

impact on the functionality under test. Extending Grafter to transplant tests remains as

future work. In Section 4.5.2, we do not assume that all clones should behave similarly at

runtime nor we argue that all behavioral differences indicate cloning bugs. Rather, Grafter

helps detect behavioral differences concretely and automatically. Therefore, it is necessary

for the authors of clones to confirm whether detected behavioral differences are intended or
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represent potential bugs. Assessing if the generated tests are valuable to the authors remains

as future work.

4.7 Summary

This chapter presents the first approach called Grafter that enables developers to reuse the

same test between similar programs and examine their behavioral similarity and differences.

Existing test reuse and differential testing techniques are much restricted to comparable

functions with clear input-output interfaces. By contrast, Grafter is capable of handling

arbitrary code fragments by exposing their de-facto interfaces via def-use analysis and han-

dling their variations using a set of code transformation and data propagation rules. The

evaluation on 52 non-identical clones shows that Grafter achieves 94% success rate in test

reuse and transplantation, and helps developers identify up to 2X more seeded bugs than an

existing static approach.

Both Critics and Grafter leverage similarities and differences among code clones in

local codebases, but do not harness similar programs in the large body of open-source projects

available on the Internet. The next three chapters will present three techniques that facilitate

software development by mining, analyzing, and visualizing API usage patterns and code

adaptation patterns learned from hundreds of thousands of GitHub projects.
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CHAPTER 5

Mining Common API Usage Patterns from Massive

Code Corpora

The availability of the large and growing body of open-source projects suggests a new, data-

driven approach for software development: why not let the statistical properties of programs

estimated over massive code corpora influence the development of software? In this chapter,

we focus on API usage correctness in software products, since a common task in modern

software development is to learn how to correctly and effectively use existing APIs. In

partcilar, we present the first scalable approach that harnesses the power of such Big Code

by mining common API usage patterns from 380K GitHub projects.

5.1 Introduction

Library APIs are becoming the fundamental building blocks in modern software develop-

ment. Programmers reuse existing functionalities in well-tested libraries and frameworks

by stitching API calls together, rather than building everything from scratch. Online Q&A

forums such as Stack Overflow have a large number of curated code examples [202, 238].

Though such curated examples can serve as a good starting point, they could potentially

impact the quality of production code, when integrated to a target application verbatim.

Recently, Fischer et al. find that 29% of security-related snippets in Stack Overflow are in-

secure and these snippets could have been reused by over 1 million Android apps on Google

play, which raises a big security concern [73]. Previous studies have also investigated the

quality of online code examples in terms of compilability [223, 259], unchecked obsolete us-

age [268], and comprehension issues [235]. However, none of these studies have investigated
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the reliability of online code examples in terms of API usage correctness. There is also no

tool support to help developers easily recognize unreliable code examples in online Q&A

forums.

This chapter aims to assess the reliability of code examples on Stack Overflow by con-

trasting them against desirable API usage patterns mined from GitHub. Our insight is that

commonly recurring API usage from a large code corpus may represent a desirable pattern

that a programmer can use to assess or enhance code examples on Stack Overflow. The

corpus should be large enough to provide sufficient API usage examples and to mine rep-

resentative API usage patterns. We also believe that quantifying how many snippets are

similar (or related but not similar) to a given example can improve developers’ confidence

about whether to trust the example as is.

Therefore, we design an API usage mining technology, ExampleCheck that scales to

over 380K GitHub repositories without sacrificing the fidelity and expressiveness of the un-

derlying API usage representation. By leveraging an ultra-large-scale software mining infras-

tructure [66,239], ExampleCheck efficiently searches over GitHub and retrieves an average

of 55144 code snippets for a given API within 10 minutes. We perform program slicing to

remove statements that are not related to the given API, which improves accuracy in the min-

ing process (Section 5.4). We combine frequent subsequence mining and SMT-based guard

condition mining to retain important API usage features, including the temporal ordering

of related API calls, enclosing control structures, and guard conditions that protect an API

call. In terms of our study scope, we target 100 Java and Android APIs that are frequently

discussed on Stack Overflow. We then inspect all patterns learned by ExampleCheck, cre-

ate a data set of 180 desirable API usage patterns for the 100 APIs, and study the extent of

API misuse in Stack Overflow.

Out of 217,818 SO posts relevant to our API data set, 31% contain potential API mis-

use that could produce symptoms such as program crashes, resource leaks, and incomplete

actions. Such API misuse is caused by three main reasons—missing control constructs, miss-

ing or incorrect order of API calls, and incorrect guard conditions. Database, crypto, and

networking APIs are often misused, since they often require observing the ordering between
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multiple calls and complex exception handling logic. Though programmers often put more

trust on highly voted posts in Stack Overflow, we do not observe a strong positive nor neg-

ative correlation between the number of votes and the reliability of Stack Overflow posts

in terms of API usage correctness. This observation suggests that votes alone should not

be used as the single indicator of the quality of Stack Overflow posts. Our study provides

empirical evidence about the prevalence and severity of API misuse in online Q&A posts

and indicates that Stack Overflow needs another mechanism that helps users to understand

the limitation of existing curated examples. We propose a Chrome extension that suggests

desirable or alternative API usage for a given Stack Overflow code example, along with

supporting concrete examples mined from GitHub.

The rest of this chapter is organized as follows. Section 5.2 motives our work with a

code reuse scenario on Stack Overflow. Section 5.3 presents an automated pattern inference

approach to facilitate API misuse detection for arbitrary APIs by mining usage patterns

from massive software corpora. Section 5.5 describes the empirical study of API misuses on

Stack Overflow. Section 5.7 discusses the threats to validity.

5.2 Motivating Examples

Suppose Alice wants to write data to a file using FileChannel. Alice searches on Stack

Overflow and finds two code examples, both of which are accepted as correct answers and

upvoted by other programmers, as shown in Figure 5.1. Though such curated examples can

serve as a good starting point for API investigation, both examples have API usage violations

that may induce unexpected behavior in real applications. If Alice puts too much trust on

the given example as is, she may inadvertently follow less ideal API usage.

The first post in Figure 5.1a does not call FileChannel.close to close the channel. If

Alice copies this example to a program that does not heavily access new file resources, this

example may behave properly, because OS will clean up unmanaged file resources eventually

1http://stackoverflow.com/questions/10065852

2http://stackoverflow.com/questions/10506546
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(a) An example that does not close FileChannel properly1

(b) An example that misses exception handling2

Figure 5.1: Two code examples about how to write data to a file using FileChannel on

Stack Overflow

94



after the program exits. However, if Alice reuses the example in a long-running program

with heavy IO, such lingering file resources may cause file handle leaks. Since most operating

systems limit the number of opened files, unclosed file streams can eventually run out of file

handle resources [232]. Alice may also lose cached data in the file stream, if she uses File-

Channel to write a big volume of data but forgots to flush or close the channel.

Even though the second example in Figure 5.1b calls FileChannel.close, it does not

handle the potential exceptions thrown by FileChannel.write. Calling write could throw

ClosedChannelException, if the channel is already closed. If Alice uses FileChannel in a

concurrent program where multiple threads attempt to access the same channel, Asynchronous-

CloseException will occur if one thread closes the channel, while another thread is still

writing data.

As a novice programmer, Alice may not easily recognize the potential limitation of given

Stack Overflow examples. In this case, our approach ExampleCheck scans over 380K

GitHub repositories and finds 2230 GitHub snippets that also call FileChannel.write.

ExampleCheck then learns two common usage patterns from these relevant GitHub snip-

pets. The mostly frequent usage supported by 1829 code snippets on GitHub indicates that

a method call to write() must be contained inside a try and catch block. Another frequent

usage supported by 1267 GitHub snippets indicates that write must be followed by close.

By comparing code snippets in Figures 5.1a and 5.1b against these two API usage patterns,

Alice may consider adding a missing call to close and an exception handling block during

the example integration and adaptation.

5.3 Scalable API Usage Mining on 380K GitHub Projects

As it is difficult to know desirable or alternative API usage a priori, we design an API usage

mining approach, called ExampleCheck that scales to massive code corpora such as GitHub.

We then inspect the results manually and construct a data set of desirable API usage to be

used for the Stack Overflow study in Section 5.5.

Given an API method of interest, ExampleCheck takes three phases to infer API usage.
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sequence := ε | call ; sequence

| structure { ; sequence ; } ; sequence

call := name(t1, ...tn)@condition

structure := if | else | loop | try | catch(t) | finally

condition := boolean expression

name := method name

t := argument type | exception type | ∗

Figure 5.2: Grammar of Structured API Call Sequences

In Phase 1, given an API method of interest, ExampleCheck searches GitHub snippets that

call the given API method, removes irrelevant statements via program slicing, and extracts

API call sequences. In Phase 2, ExampleCheck finds common subsequences from individual

sequences of API calls. In Phase 3, to retain conditions under which each API can be invoked,

ExampleCheck mines guard conditions associated with individual API calls. In order to

accurately estimate the frequency of unique guard conditions, ExampleCheck uses a SMT

solver, Z3 [60], to check the semantic equivalence of guard conditions, instead of considering

the syntactic similarity between them only. We manually inspect all inferred patterns to

construct the data set of desirable API usage. This data set is used to report potential API

misuse in the Stack Overflow posts in our study discussed in Section 5.5.

5.3.1 Structured Call Sequence Extraction and Slicing on GitHub

Given an API method of interest, ExampleCheck searches individual code snippets invoking

the same method in the GitHub corpora. ExampleCheck scans 380,125 Java repositories on

GitHub, collected on September 2015. To filter out low-quality GitHub repositories, we only

consider repositories with at least 100 revisions and 2 contributors. To scale code search to

massive corpora, ExampleCheck leverages a distributed software mining infrastructure [66]

to traverse the abstract syntax trees (ASTs) of Java files. ExampleCheck visits every AST

method and looks for a method invocation of the API of interest. Figure 5.3 shows a code

snippet retrieved from GitHub for the File.createNewFile API. This snippet creates a
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property file, if it does not exist by calling createNewFile (line 18).

To extract the essence of API usage, ExampleCheck models each code snippet as a

structured call sequence, which abstracts away certain syntactic details such variable names,

but still retains the temporal ordering, control structures, and guard conditions of API calls

in a compact manner. Figure 5.2 defines the grammar of our API usage representation. A

structured call sequence consists of relevant control structures and API calls, separated by

the delimiter “;”. This delimiter is is a separator in our pattern grammar in Figure 5.2, not

a semi-colon for ending each statement in Java. We resolve the argument types of each API

call to distinguish method overloading. In certain cases, the argument consists of a complex

expression such as write(e.getFormat()), where the partial program analysis may not be

able to resolve the corresponding type. In that case, we represent unresolved types with

∗, which can be matched with any other types in the following mining phases. Each API

call is associated with a guard condition that protects its usage or true, if it is not guarded

by any condition. Catch blocks are also annotated with the corresponding exception types.

We normalize a catch block with multiple exception types such as catch (IOException |

SQLException){...} to multiple catch blocks with a single exception type such as catch

(IOException){...} catch (SQLException){...}.

ExampleCheck builds the control flow graph of a GitHub snippet and identifies related

control structures [25]. A control structure is related to the given API call, if there exists a

path between the two and the API call is not post-dominated by the control structure. For

instance, the API call to createNewFile (line 18) is control dependent on the if statements

at lines 2 and 17 in Figure 5.3. From each control structure, we lift the contained predicate.

This process is a pre-cursor for mining a common guard condition that protects each API

method call in Phase 3. We use the conjunction of the lifted predicates in all relevant

control structures. If an API call is in the false branch of a control structure, we negate the

predicate when constructing the guard. In Figure 5.3, since createNewFile is in the false

branch of the if statement at line 2 and the true branch of the if statement at line 17, its

guard condition is temp.equals("props.txt") && !file.exists(). The process of lifting

control predicates can be further improved via symbolic execution to account for the effect of
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1 void initInterfaceProperties(String temp, File dDir) {

2 if(!temp.equals("props.txt")) {

3 log.error("Wrong Template.");

4 return;

5 }

6 // load default properties

7 FileInputStream in = new FileInputStream(temp);

8 Properties prop = new Properties();

9 prop.load(in);

10 // init properties

11 prop.set("interface", PROPERTIES.INTERFACE);

12 prop.set("uri", PROPERTIES.URI);

13 prop.set("version", PROPERTIES.VERSION);

14 // write to the property file

15 String fPath=dDir.getAbosulatePath()+"/interface.prop";

16 File file = new File(fPath);

17 if(!file.exists()) {

18 file.createNewFile();

19 }

20 FileOutputStream out = new FileOutputStream(file);

21 prop.store(out, null);

22 in.close();

23 }

Figure 5.3: This method is extracted as an example of File.createNewFile from the GitHub

copora. Program slicing only retains the underlined statements when k bound is set to 1,

since they have direct control or data dependences on the focal API call to createNewFile

at line 18.

program statement before an API call. Project-specific predicates and variable names used

in the guard conditions are later generalized in Phase 3 to unify equivalent guards regardless

of project-specific details.

ExampleCheck performs intra-procedural program slicing [252] to filter out any state-

ments not related to the API method of interest. For example, Properties API calls in

Figure 5.3 should be removed, since they are irrelevant to createNewFile. During this

process, ExampleCheck uses both backward and forward slicing to identify data-dependent

statements up to k hops. Setting k to 1 retains only immediately dependent API calls in

the call sequence, while setting k to ∞ includes all transitively dependent API calls. For

instance, the Properties APIs such as load (line 9) and set (lines 11-13) are transitively de-

pendent on createNewFile through variables file, out, and prop. Table 5.1 shows the call

sequences extracted from Figure 5.3 with different k bounds. By removing irrelevant state-

ments, program slicing significantly reduces the mining effort and also improves the mining
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Table 5.1: Structured call sequences sliced using k bounds. Guard conditions and argument

types are omitted for presentation purposes.

Bound Variables Structured Call Sequence

k=1 file new File; if {; createNewFile; }; new FileOutputStream

k=2
file, fPath,

out

getAbsolutePath; new File; if {; createNewFile; };
new FileOutputStream; store

k=3
file, fPath,

out, prop

new Properties; load; set; set; set; getAbsolutePath; new File;

if {; createNewFile; }; new FileOutputStream; store

k=∞
file, fPath,

out, prop,

in, temp

new FileInputStream; new Properties; load; set; set; set;

getAbsolutePath; new File; if {; createNewFile; };
new FileOutputStream; store; close

No Slicing

file, fPath,

out, prop, in,

temp, log

if {; debug; }; new FileInputStream; new Properties;

getAbsolutePath; load; set; set; set; new File; if {;
createNewFile; }; new FileOutputStream; store; close

precision. Setting k to 1 leads to best performance empirically (discussed in Section 5.7).

5.3.2 Frequent Subsequence Mining

Given a set of structured call sequences from Phase 1, ExampleCheck finds common subse-

quences using BIDE [245]. Computing the common subsequence is widely practiced in the

literature of API usage mining [229,230,244,267] and has the benefit of filtering out API calls

pertinent to only a few outlier examples. In this phase, ExampleCheck focuses on mining

the temporal ordering of API calls only. The task of mining a common guard condition is

done in Phase 3 instead. BIDE mines frequent closed sequences above a given minimum sup-

port threshold σ. A sequence is a frequent closed sequence, if it occurs frequently above the

given threshold and there is no super-sequence with the same support. When matching API

signature, ExampleCheck matches ∗ with any other types in the same position in an API

call. For example, write(int,∗) can be matched with write(int,String) but will not be

matched with write(String,int). ExampleCheck ranks a list of sequence patterns based

on the number of supporting GitHub examples, which we call support. ExampleCheck

filters invalid sequence patterns that do not follow the grammar in Figure 5.2, as frequent
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sub-sequence mining can find invalid patterns with unbalanced brackets such as “foo@true;

}; }”.

5.3.3 Guard Condition Mining

Given a common subsequence from Phase 2, ExampleCheck mines the common guard con-

dition of each API call in the sequence. The rationale is that each method call in the

common subsequence may have a guard to ensure that the constituent API call does not

lead to a failure. Therefore, ExampleCheck collects all guard conditions from each call from

Phase 1 and clusters them based on semantic equivalence. The guard conditions extracted

from GitHub often contain project-specific predicates and variable names. Therefore, Exam-

pleCheck first abstracts away such syntactic details before clustering guard conditions. For

each guard condition from Phase 1, ExampleCheck removes project-specific predicates by

substituting them with true. This ensures that the generalized guard condition is still im-

plied by the original guard after removing project-specific predicates. A predicate in a guard

condition is considered project-specific or irrelevant to an API call if it does not mention

the receiver object or input arguments of the given API call. In Figure 5.3, the identi-

fied guard condition of file.createNewFile() (line 18) is temp.equals("props.txt")

&& !file.exists(). Its first predicate temp.equals("props.txt") is considered irrele-

vant to file.createNewFile(), since the predicate does not check the receiver object of

createNewFile. As a result, the guard condition is transformed to true && !file.exists()

to generalize the irrelevant predicate. In addition, since each code snippet may use differ-

ent variable names, we normalize these names in the guard conditions. ExampleCheck

uses rcv and argi as the symbolic names of the receiver and the i-th input argument. For

instance, the second predicte !file.exists() is normalized to !rcv.exists(), since the

file variable is the receiver of createNewFile.

Table 5.2 illustrates how we canonicalize guard conditions of String.substring. This

method takes an integer index as input and returns a substring that begins from the given

index. The third guard condition in Column Guard contains a project-specific predicate,
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Table 5.2: Example guard conditions of String.substring. API Call shows three example

call sites. Guard shows the guard condition associated with each call site. Generalized shows

the guard conditions after eliminating project-specific predicates. Symbolized shows the

guard conditions after symbolizing variable names.

API Call Guard Generalized Symbolized

s.substring(start)
start>=0 &&

start<=s.length()

start>=0 &&

start<=s.length()

arg0>=0 &&

arg0<=rcv.length()

log.substring(index)
-1<index &&

index<log.length()+1

-1<index &&

index<log.length()+1

-1<arg0 &&

arg0<rcv.length()+1

f.substring(

f.indexOf(“/”))

dir!=null &&

f.indexOf(“/”)>=0 &&

f.indexOf(“/”)<=f.length()

true &&

f.indexOf(“/”)>=0 &&

f.indexOf(“/”)<=f.length()

true &&

arg0>=0 &&

arg0<=rcv.length()

dir!=null. Since such predicate is not related to String.substring’s arguments or receiver

object, ExampleCheck substitutes dir!=null with true, as shown in Column Generalized.

All three examples name the receiver object differently—s, log, and f respectively. Exam-

pleCheck replaces them with a unique symbol, rcv. Similarly, ExampleCheck replaces the

input argument with arg0, as shown in Column Symbolized.

ExampleCheck initializes each cluster with each canonicalized guard. In the follow-

ing clustering process, ExampleCheck checks the equivalence of every pair of clusters and

merges them with if the guards are logically equivalent, until no more clusters can be merged.

At the end, we count the number of guard conditions in each cluster as frequency. In a large

corpus, the same logic predicate can be expressed in multiple ways. ExampleCheck checks

the semantic equivalence of guard conditions, instead of syntactic similarity only. Exam-

pleCheck formalizes the equivalence of two guard conditions as a satisfiability problem:

p⇔ q is valid iff. ¬((¬p ∨ q) ∧ (p ∨ ¬q)) is unsatisfiable.

ExampleCheck uses a SMT solver, Z3 [60] to check the logical equivalence between two

guards during the merging process. As Z3 only supports primitive types, ExampleCheck

declares variables of unsupported data types as integer variables and substitutes constants

such as null with integers in Z3 queries. In addition, ExampleCheck substitutes API
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calls in a predicate to symbolic variables based on their return types. Compared with prior

work [168], ExampleCheck is capable of proving the semantic equivalence of arbitrary pred-

icates regardless of their syntactic similarity. For example, the symbolized guards of the first

two examples in Table 5.2 are equivalent, even though they are expressed in different ways,

(-1<arg0 && arg0<rcv.length()+1) and (0¡=arg0 && arg0¡=rcv.length()) respectively.

Prior work [168] cannot reason about the equivalence between -1<arg0 and 0<=arg0. How-

ever, ExampleCheck groups these logically equivalent predicates into the same cluster using

the integer theorem prover in Z3.

If ExampleCheck identifies a sequence pattern containing multiple guard patterns for

each API call, ExampleCheck enumerates different guards for each API and ranks these

patterns by the number of supporting code examples in the corpora. Similar to the sub-

sequence mining in Phase 2, ExampleCheck uses a minimum support threshold θ to filter

infrequent guard conditions.

We bootstrap ExampleCheck with both the sequence mining threshold σ and the guard

condition mining threshold θ set to 0.5, which means sequence and guard condition pat-

terns are reported, only if more than half of relevant GitHub snippets include them. If

ExampleCheck learns no patterns with these initial thresholds, we gradually decrease both

thresholds by 0.1 till finding patterns. If the mining process does not terminate after 2 hours

due to too many candidate patterns, we kill the process and increase both thresholds by 0.1

accordingly. This threshold adjustment method is empirically effective to achieve a good

precision (73%).

5.4 Evaluation of the API Usage Mining Framework

5.4.1 Pattern Mining Accuracy

We systematically evaluate the pattern mining accuracy of ExampleCheck using the groundtruth

patterns of 30 Java API methods in MUBench [26]. These patterns are constructed based

on existing bug datasets [56,97,118], previous literature [67,83], and API misuse reported by
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Table 5.3: Pattern mining accuracy with different settings. No SMT and Small Corpus are

run with k set to 1.

Setting
Precision (%) Recall (%)

Rank
Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

k = 1 79 80 79 85 91 94 3

k = 2 77 79 79 84 92 95 4

k = 3 77 80 78 84 91 94 4

k = ∞ 71 74 73 77 91 94 4

No Slicing 65 65 67 73 81 89.0 9

Small Corpus 49 49 49 42 46 53 6

No SMT 78 79 79 81 88 92 3

professional developers. We do not include APIs that have no references on Stack Overflow

and those with project-specific misuse related to the logic of a client program.

Table 5.3 describes the pattern mining accuracy of ExampleCheck in various settings.

When setting the dependency bound to one, enabling SMT solving, and considering top five

patterns, ExampleCheck learns expected patterns for all 30 API methods from massive code

corpora with 80% precision and 91% recall. When considering top 10 patterns, the recall

increases gradually to 94% while the precision does not vary much. Several patterns in the

ground truth of MUBench occur infrequently on Github and therefore cannot be easily in-

ferred within top 10 patterns. For instance, PrintWriter.close should be called in finally

to ensure that the buffered contents are written to the stream in case an exception occurs in

the middle of execution. However, among all code examples that call PrintWriter.close

on Github, only 17% call this API in finally. On the other hand, ExampleCheck often

learns patterns that occur frequently on Github but are not included in the ground truth

of MUBench. However, patterns not in the ground truth are not necessarily useless. Ta-

ble 5.4 shows examples of inferred patterns that are useful but not in our ground truth. For

instance, TypedArray is allocated from a static pool to store the layout attributes whenever

a new application view is created in Android. The corresponding pattern in our benchmark

checks for missing exception handling when retrieving attributes from TypedArray with in-
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valid indices, which is confirmed on Github.3 In another perspective, TypedArray should be

recycled immediately to avoid resource leak and GC overhead, as mentioned in the docu-

mentation.4 This pattern is commonly practiced on Github and inferred by ExampleCheck

(ranked #1).

Table 5.4: Examples of useful patterns mined from GitHub but not included in MUBench

API Pattern Rank Description

TypedArray.getString getString(1)@true; recycle(0)@true 1 Recycle TypedArray after use

RandomFileAccess.read try {; read(0)@true; }; catch {; } 1 Catch I/O exceptions

PrintWriter.write write(1)@true; flush(0)@true 4 Flush the stream after write

JsonElement.getAsString getAsString(0)@rcv!=null 1 Check if JsonElement is null

InputStream.read read(0)@true; if {; } 1
Checks if the end of the

stream has been reached

SQLiteDatabase.query query(7)@true; If {; } 2 Check if query returns null

To demonstrate the benefit of mining massive code corpora, we curate a small code

corpus that contains 7,899 randomly selected GitHub projects. ExampleCheck only learns

expected patterns for 19 of 30 APIs from the small corpus with 49% precision and 46% recall

in top five patterns. The average rank of expected patterns is 6 in the patterns inferred from

the small corpus vs. 3 from the massive corpora. ExampleCheck learns patterns with low

accuracy and ranking in the small corpus for three reasons. In 3 cases, ExampleCheck does

not find any relevant examples in the small corpus. In 6 cases, ExampleCheck finds several

examples but none of them contain the correct API usage. In 2 cases, ExampleCheck finds

several examples but the correct usage occurs very infrequently. Unless there is an efficient

way of creating a corpus of high-quality code examples, we believe mining massive code

corpora is a more general and accurate approach to infer patterns for arbitrary APIs than

mining a pre-defined code corpus.

Even though bounding dependency analysis with lower bounds may lead to incomplete

sequences with less API calls, varying the dependency bound k does not change the accuracy

too much. However, compared with unbounded analysis, filtering weakly dependent API

3https://github.com/chrisjenx/Calligraphy/issues/41

4https://developer.android.com/reference/android/content/res/TypedArray.html
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calls can improve the precision and recall slightly. This is because including these weakly

dependent API calls may introduce additional patterns of no interest. Furthermore, mining

call sequences without removing any irrelevant calls will introduce more noise during pattern

mining, which degrades the precision and recall by around 13% and 10% respectively.

We hypothesize that SMT-based precondition mining should infer API preconditions

more accurately, since SMT solving is capable of merging semantically equivalent precon-

ditions which cannot be easily addressed via heuristic-based mining. However, we observe

that enabling SMT solving only increases the precision and recall slightly. This is due to

two reasons. First, only 9 of the 30 APIs in our benchmark require preconditions. Disabling

SMT solving in the precondition mining will not affect the other 21 APIs. Second, after

disabling SMT solving, the previously mined preconditions are dismissed in only 2 APIs.

SMT solving is mostly useful to merge equivalent predicates that are expressed in multiple

ways. However, the expected preconditions in our benchmark are simple and tend to be

expressed uniquely.

5.4.2 Scalability

For each API, ExampleCheck first searches relevant code examples in the GitHub corpora

and extracts sliced call sequences using Boa. Table 5.5 summarizes the search time and the

number of relevant code examples across the 30 APIs. ExampleCheck finds an average of

32k code examples for each API, indicating that massive code corpora can provide sufficient

examples to learn patterns from. On average, ExampleCheck takes around 10 minutes to

search for relevant code examples on GitHub. Dependency analysis and sequence slicing do

not impose much overhead during code search as the code search time does not vary much

with different dependency analysis settings.

To demonstrate that ExampleCheck scales to a large number of code examples, we

create datasets with different numbers of examples for each API and run ExampleCheck

on these datasets with various settings. For APIs that have a small number of examples, we

repeat existing examples to create larger datasets. The experiments run on a single machine

105



Table 5.5: GitHub code search using Boa

Code Search Time (min)
Example#

k = 1 k = 2 k = 3 k = ∞ No Slicing

Average 9m 58s 9m 59s 10m 9s 10m 10s 10m 16s 32,678

Median 9m 41s 9m 43s 9m 52s 9m 49s 9m 48s 11,405

Max 14m 44s 12m 45s 14m 37s 16m 49s 15m 14s 294,569

Min 8m 35s 8m 26s 8m 45s 8m 38s 8m 40s 376

with 2.93GHz dual core processor and 8GB DDR3 RAM. We run ExampleCheck on each

dataset of each API five times and compute the average execution time. Figure 5.4a shows

the execution time that ExampleCheck takes to infer patterns on different datasets with

the default thresholds (σ=0.5, θ=0.5) but different dependency analysis bounds. Compared

with the unbounded dependency analysis (k=∞) which retains all dependent API calls in a

sliced sequence, the bounded analysis speeds up ExampleCheck by 3.3X by only retaining

immediately dependent API calls (k=1). This is because bounded analysis creates shorter

API call sequences by removing weakly dependent API calls. In contrast, ExampleCheck

runs up to 4.6X slower without removing any irrelevant API calls (no slicing). Figure 5.4b

shows the pattern inference time with k set to 1 but different minimum support thresholds

of sequence mining and precondition mining. ExampleCheck slows down significantly as

the thresholds goes below 0.5. On average, ExampleCheck is capable of inferring patterns

within 10 minutes with thresholds above 0.3.

5.5 A Study of API Misuse in Stack Overflow

5.5.1 Data Collection

In terms of API scope, we target 100 popular Java APIs. From the Stack Overflow dump

taken in October 2016,5 we scan and parse all Java code snippets and extract API method

calls. We rank the API methods based on frequency and remove trivial ones such as

System.out.println. As a result, we select 70 frequently used API methods on Stack

5https://archive.org/details/stackexchange, accessed on Oct 17, 2016.
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Figure 5.4: Pattern mining performance

Overflow. They are in diverse domains, including Android, Collection, document processing

(e.g., String, XML, JSON), graphical user interface (e.g., swing), IO, cryptography, security,

Java runtime (e.g. Thread, Process), database, networking, date, and time. The rest 30

APIs come from an API misuse benchmark, MUBench [26], after we exclude those patterns

without corresponding SO posts and those that cannot be generalized to other projects.

ExampleCheck scans over 380K GitHub projects and finds an average of 55144 relevant

code snippets for each API method, ranging from 211 to 450,358 snippets. This result indi-

cates that massive corpora can provide sufficient code snippets to learn API usage patterns

from. ExampleCheck infers 245 API usage patterns for the 100 APIs in our study scope.

This initial set of patterns may include invalid or incorrect patterns. Therefore, we manually

inspect the 245 inferred patterns carefully and exclude incorrect ones based on online docu-

mentation and pattern frequencies. The overall precision is 73%, resulting in 180 validated,

correct patterns that we can use for the empirical study in Section 5.5. These 180 validated

patterns cover 85 of the 100 API methods. The rest 15 API methods do not converge to any

API usage patterns that can be confirmed by online documentation, since they are simple

to use and do not require additional guard conditions or additional API calls. For example,

System.nanoTime can be used stand-alone to obtain the current system time. Even though

these 15 API methods do not have any patterns, we still include them in the scope of Stack
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Overflow study, since they represent a category of simple API methods that programmers

are less likely to make mistakes.

During the inspection process, each pattern is annotated as either alternative or required.

A code snippet should satisfy one of alternative patterns and must satisfy all required pat-

terns. For example, ExampleCheck learns firstKey()@rcv.size()>0 and firstKey()@-

!rcv.isEmpty() for SortedMap.firstKey. Both patterns ensure that a sorted map is not

empty before getting the first key to avoid NoSuchElementException. They are considered

alternative to each other. As an example of required patterns, programmers must handle

potential IOException, when reading from a stream (e.g., FileChannel), and close it to

avoid resource leaks.

Table 5.6 shows 25 samples of validated API patterns in 9 domains. Alternative patterns

are marked with ♣. Column Description describes each pattern. For instance, TypedArray

is allocated from a static pool to store the layout attributes, whenever a new application

view is created in Android. It should be recycled immediately to avoid resource leaks and

GC overhead, as mentioned in the JavaDoc.6 This pattern is supported by 2126 of 3348

related snippets in GitHub and inferred by ExampleCheck (ranked #1). The entire data

set of API usage patterns for all 100 APIs and the list of SO posts with potential API usage

violations are publicly available.7

We collect all Stack Overflow posts relevant to the 100 Java APIs in our study scope from

the Stack Overflow data dump. We extract code examples in the markdown <code> from

SO posts with the Java tag and consider code examples in the answer posts only, since code

appearing in the question posts is buggy and rarely used as examples. We gather additional

information associated with each post, including view counts, vote scores (i.e., upvotes minus

downvotes), and whether a post is accepted as a correct answer.

Previous studies have shown that online code snippets are often unparsable [223,259] and

contain ambiguous API elements [55] due to the incompleteness of these snippets. Exam-

6https://developer.android.com/reference/android/content/res/TypedArray.html

7http://web.cs.ucla.edu/∼tianyi.zhang/examplecheck.html
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pleCheck leverages a state-of-the-art partial program parsing and type resolution technique

to handle these incomplete snippets, whose accuracy of API resolution is reported to be

97% [224]. Code examples that call overridden APIs or ambiguous APIs (i.e., APIs with

the same name but from different Java classes) are filtered by checking the argument and

receiver types respectively. In total, we find 217,818 SO posts with code examples for the

100 APIs in our study scope. Each post has 7644 view counts on average.

ExampleCheck checks whether the structured call sequence of a Stack Overflow code

example is subsumed by the desirable API usage in the pattern set. A structured call sequence

s is subsumed by a pattern p, only if p is a subsequence of s and the guard condition of each

API call in s implies the guard of the corresponding API call in p. During this subsumption

checking process, the guard conditions in Stack Overflow code examples are generalized in

the same manner before checking logical implication using Z3. For a SO post with multiple

method-level code snippets, ExampleCheck inlines invoked methods before extracting the

structured call sequence in order to emulate a lightweight inter-procedural analysis.

5.5.2 Manual Inspection of Stack Overflow

To check whether Stack Overflow posts with potential API misuse reported by Exam-

pleCheck indeed suggest undesirable API usage, the first and the third authors manually

check 400 random samples of SO posts with reported API usage violations. We read the text

descriptions and comments of each post and check whether the surrounding narrative dis-

cusses how to prevent the violated pattern. If there are multiple code snippets in a post, we

first combine them all together and check them as a single code example. We also account for

aliasing during code inspection. We examine whether the reported API usage violation could

produce any potential behavior anomaly, such as program crashes and resource leaks on a

contrived input data or program state and whether such anomaly could have been eliminated

by following the desirable pattern. For short posts, this inspection takes about 5 minutes

each. For longer posts with a big chunk of code or multiple code fragments, it takes around

15 to 20 minutes. To reduce subjectivity, the two authors inspect these posts independently.
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The initial inter-rater agreement is 0.84, measured by Cohen’s kappa coefficient [242]. The

two authors resolve disagreements on all but two posts, and the kappa coefficient after the

discussion is 0.99. The two authors disagree how helpful reported violations are in two posts,

where API usage violations in these posts are either clarified in surrounding natural language

explanations or mentioned in post comments.

True Positive 289 out of 400 inspected Stack Overflow posts (72%) contain real API

misuse, confirmed by both authors. For instance, the following example demonstrates how

to retrieve records from SQLiteDatabase using Cursor but forgets to close the database

connection at the end.8 Programmers should always close the connection to release all its

resources. Otherwise, it may quickly run out of memory, when retrieving a large volume of

data from the database frequently.

1 public ArrayList<UserInfo> get_user_by_id(String id) {

2 ArrayList<UserInfo> listUserInfo = new ArrayList<UserInfo>();

3 SQLiteDatabase db = this.getReadableDatabase();

4 Cursor cursor = db.query(...);

5

6 if (cursor != null) {

7 while (cursor.moveToNext()) {

8 UserInfo userInfo = new UserInfo();

9 userInfo.setAppId(cursor.getString(cursor.getColumnIndex(COLUMN_APP_ID)));

10 // HERE YOU CAN MULTIPLE RECORD AND ADD TO LIST

11 listUserInfo.add(userInfo);

12 }

13 }

14 return listUserInfo;

15 }

In many cases, a code example may function well with some crafted input data, even

though it does not follow desirable API usage. For example, programmers should check

whether the return value of String.indexOf is negative to avoid IndexOutOfBoundsExcep-

8https://stackoverflow.com/questions/31531250
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tion. The example below does not follow this practice, but still works well with a hard-coded

constant, text.9 One can argue that the input data is hard-coded for illustration purposes

only, as the role of Stack Overflow post is to provide a starting point rather than teaching

complete details of correct API usage. However, if a programmer reuses this code example

and replaces the hard-coded text with a function call reading from a html file, the reused

code may crash if the html document does not have an expected element. Therefore, it is

still beneficial to inform the users about desirable usage and potential pitfalls, especially for

a novice programmer who may not be familiar with the given API.

1 String text = "<img src=\"mysrc\" width=\"128\" height=\"92\" border=\"0\" alt=\"alt\"

/><p><strong>";

2 text = text.substring(text.indexOf("src=\""));

3 text = text.substring("src=\"".length());

4 text = text.substring(0, text.indexOf("\""));

5 System.out.println(text);

False Positive ExampleCheck mistakenly detects API misuse in 64 posts. The majority

reason is that ExampleCheck checks for API misuse via a sequence comparison without

deep knowledge of its specification, which is not sufficient in 56 posts. For instance, the

following SO post calls substring (line 5) without explicitly checking whether the start

index (index+1) is not a negative number and the end index (strValue.length()) is not

greater than the length of the string.10 While ExampleCheck warns potential API misuse,

according to JDK specifications, indexOf never returns a negative integer ≤ -2. Thus, the

following code is still safe, because index+1 is guaranteed to be non-negative. Similarly,

strValue.length() returns the string’s length, which cannot be out of bounds. Such cases

require having detailed specifications, such as the return value of indexOf() is always ≥1.

1 public String getDecimalFractions(BigDecimal value) {

2 String strValue = value.toPlainString();

3 int index = strValue.indexOf(".");

9https://stackoverflow.com/questions/12742734

10http://stackoverflow.com/questions/7473462
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4 if(index != -1) {

5 return strValue.substring(index+1, strValue.length());

6 }

7 return "0";

8 }

Second, 36 false positives are correct but infrequent alternatives. ExampleCheck does

not learn these alternative usage patterns, because they do not commonly appear in GitHub.

For example, programmers should first call new SimpleDateFormat to instantiate Simple-

DateFormat with a valid date pattern and then call format, which is supported by 18,977

related GitHub snippets. An alternative way is to instantiate SimpleDateFormat by calling

getInstance, as shown in the following SO post.11 This alternative usage is supported by

360 GitHub snippets and therefore not inferred by ExampleCheck due to its low frequency.

1 ... some other code...

2 public String toString() {

3 Calendar c = new GregorianCalendar();

4 c.set(Calendar.DAY_OF_WEEK, this.toCalendar());

5 SimpleDateFormat sdf=(SimpleDateFormat)SimpleDateFormat.getInstance();

6 sdf.applyPattern("EEEEEEEEEE");

7 return sdf.format(c.getTime());

8 }

In some SO posts, users explicitly state in surrounding natural language text that the

given code example must be improved during integration or adaptation. The following

example shows how to load a Class instance by name and then cast the class.12 The author

of this post comments that “be aware that this might throw several Exceptions, e.g. if the

class defined by the string does not exist or if AnotherClass.classMethod() doesn’t return

an instance of the class you want to cast to.” ExampleCheck still flags the post because of

a missing exception handling, since the desirable API usage is not reflected in the embedded

code. However, it is certainly possible that SO users will read both the code and surrounding

11https://stackoverflow.com/questions/2243850

12https://stackoverflow.com/questions/4650708
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text carefully and investigate how to handle edge cases narrated in the text.

1 Class<?> myclass = Class.forName("myClass_t");

2 myClass_t myVar = (myClass_t)myclass.cast(AnotherClass.classMethod());

Sometimes, Stack Overflow users split a single code example into multiple fragments and

provide step-by-step explanation, which is considered as a better way of answering questions

in Stack Overflow [166]. ExampleCheck may report API misuse if two related API calls

are split in different code fragments.13 This can be addressed by stitching these snippets

together during analysis.

5.5.3 Is API Misuse Prevalent on Stack Overflow?

ExampleCheck detects potential API misuse in 66,897 (31%) out of 217,818 Stack Overflow

posts in our study. We manually label each API pattern with its corresponding domain as

well as the consequence of each possible violation. Then we write scripts to categorize

reported violations based on their domains and based on their consequences. Figure 5.5

shows the prevalence of API misuse from different domains. Database, IO, and network

APIs are often misused, since they often require to handle potential runtime exceptions

and close underlying streams to release resources properly at the end. Similarly, many

cryptography related posts are flagged as unreliable, due to unhandled exceptions. Stack

Overflow posts on string and text manipulation often forget to check the validity of input

data (e.g., whether the input string is empty) or return values (e.g., whether the returned

character index is -1).

Among posts with potential API misuse reported by ExampleCheck, 76% could po-

tentially lead to program crashes, e.g., unhandled runtime exceptions. 18% could lead to

incomplete action, e.g., not completing a transaction after modifying resources in Android,

or not calling setVisible after modifying the look and feel of a swing GUI widget. 2% could

lead to resource leaks in operating systems, e.g., not closing a stream. We fully acknowledge

that not all detected violations could lead to bugs when ported to a target application. To

13https://stackoverflow.com/questions/11552754
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accurately assess the runtime impact of SO code examples, one must systematically integrate

these examples to real-world target applications and run regression tests.

Many SO examples aim to answer a particular programming question. Therefore, authors

of these examples may assume SO users who posted these questions already know about the

used APIs and may not include complete details of desirable API usage. However, given that

each post has 7,644 view counts on average, some users may not have similar background

knowledge. Especially for novice programmers, it may be useful to show extra tips about

desirable API usage evidenced by a large number of GitHub code snippets. We also find

that SO posts with API misuse are more frequently viewed than those posts without API

misuse, 8365 vs. 7276 on average. Therefore, there is an opportunity to help users consider

better or alternative API usage mined from massive corpora, when they stumble upon SO

posts with potential API misuse.
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Figure 5.5: API Misuse Comparison between Different Domains

5.5.4 Are highly voted posts more reliable?

Stack Overflow allows users to upvote and downvote a post to indicate the applicability and

usefulness of the post. Therefore, votes are often considered the main quality metric of Stack

Overflow examples [166]. However, we find that highly voted posts are not necessarily more

reliable in terms of correct API usage. Figure 5.6 shows the percentage of SO posts with

different vote scores that are detected with at least one API usage violation. We perform

a linear regression on the vote score and the percentage of unreliable examples, as shown

by the red line in Figure 5.6. We do not observe a strong positive or negative correlation
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between the vote of a post and its reliability in terms of API misuse. A previous study

shows that concise code examples and detailed step-by-step explanations are two key factors

of highly voted Stack Overflow posts [166]. Our manual inspection confirms that many

unreliable examples are simplified to operate on crafted input data for illustration purposes

only (Section 5.5.2). Such curated examples are not sufficient for various input data and

usage scenarios in real software systems, especially for handling corner cases. Therefore,

votes alone should not be used as a single indicator of the quality of online code examples.

To improve the quality of curated examples, Stack Overflow needs another mechanism that

helps developers understand the limitation of existing examples and decide how to integrate

the given example to production code.
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Figure 5.6: API Misuse Comparison between Code Examples with Different Vote Scores on

Stack Overflow

5.5.5 What are the characteristics of API misuse?

We classify the detected API usage violations into three categories based on the required

edits to correct the violations.

Missing Control Constructs. Many APIs should be used in a specific control-flow context

to avoid unexpected behavior. This type of API usage violations can be further split based

on the type of missing control constructs.
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Missing exception handling. If an API may throw an exception, the thrown exception

should either be caught and handled a try-catch block or be declared in the method header.

In total, we find 17,432 code examples that do not handle exceptions properly. For example,

Integer.parseInt may throw NumberFormatException if the string does not contain a

parsable integer. The following example will crash, if a user enters an invalid integer.14

A good practice is to surround parseInt with a try-catch block to handle the potential

exception. Unlike checked exceptions such as IOException, runtime exceptions such as

NumberFormatException will not be checked at compile time. In such cases, it would be

helpful to inform users about which runtime exceptions must be handled based on common

exception handling usage in GitHub.

1 Scanner scanner = new Scanner(System.in);

2 System.out.print("Enter Number of Students:\t");

3 int numStudents =
:::::::::::::::::
Integer.parseInt(scanner.nextLine());

Missing if checks. Some APIs may return erroneous values such as null pointers, which

must be checked properly to avoid crashing the succeeding execution. For example, TypedArr-

ay.getString may return null, if the given attribute is not defined in the style resource of

an Android application. Therefore, the return value, customFont must be checked before

passing it as an argument of setCustomFont (line 6) to avoid NullPointerException, which

is violated by the following Stack Overflow example.15

1 public class TextViewPlus extends TextView {

2 ... some other code ...

3 private void setCustomFont(Context ctx, AttributeSet attrs) {

4 TypedArray a = ctx.obtainStyledAttributes(attrs, R.styleable.TextViewPlus);

5 String customFont = a.getString(R.styleable.TextViewPlus_customFont);

6 setCustomFont(ctx, customFont);

7 a.recycle();

8 }

9 }

14https://stackoverflow.com/questions/3137481

15https://stackoverflow.com/questions/7197867
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Missing finally. Clean-up APIs such as close should be invoked in a finally block in case

an exception occurs before invoking those APIs. 83% of Stack Overflow examples that call

Cursor.close does not call it in a finally block, shown in the following.16 Cursor.close

may be skipped, if getString (line 5) throws an exception.

1 Cursor emails = contentResolver.query(Email.CONTENT_URI,...);

2 while (emails.moveToNext()) {

3 String email = emails.getString(emails.getColumnIndex(Email.DATA));

4 break;

5 }

6
:::::::::::::::
emails.close();

Missing or Incorrect Order of API calls. In certain cases, multiple APIs should be

called together in a specific order to achieve desired functionality. Missing or incorrect

order of such API calls can lead to unexpected behavior. For example, developers must

call flip, rewind, or position to reset the internal cursor of ByteBuffer back to the

previous position to read the buffered data properly. The following SO example could throw

BufferUnderflowException, if the internal cursor already reached the upper bound of the

buffer after the put operation at line 2.17 Without resetting the internal cursor, the next

getInt operation at line 3 would start reading from the upper bound, which is prohibited.

We find 7,956 posts that either misses a critical API call or calls APIs in an incorrect order.

1 ByteBuffer bb = ByteBuffer.allocate(4);

2 bb.put(newArgb);

3 int i =
::::::::::::
bb.getInt();

Incorrect Guard Conditions. Many APIs should be invoked under the correct guard

condition to avoid runtime exceptions. For instance, programmers should check whether

a sorted map is empty with a guard like map.size()>0 or !map.isEmpty() before calling

firstKey (API#9) on the map. However, the following calls firstKey on an empty map

16https://stackoverflow.com/questions/31427468

17http://stackoverflow.com/questions/12100651
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without a guard, leading to NoSuchElementException.18 Surprisingly, this example is ac-

cepted as the correct answer and also upvoted by six other developers on Stack Overflow.

We find 12,791 posts with incorrect guard conditions.

1 TreeMap map = new TreeMap();

2 //OR SortedMap map = new TreeMap()

3
:::::::::::::::
map.firstKey();

5.6 Augmenting Stack Overflow with API Usage Patterns mined

from GitHub

The study results in the previous section indicate that even highly voted and frequently

viewed SO posts do not necessarily follow desirable API usage. There is an opportunity to

help developers consider better or alternative API usage that is mined from massive corpora

and is supported by thousands of GitHub snippets. Certainly, the goal of Stack Overflow

is to provide ‘quick snippets’ and not to share complete details of API usage or present

compilable, runnable code. Rather, Stack Overflow often serves the purpose of providing

a starting point and helping the user to grasp the gist of how the API works by omitting

associated details such as which guard conditions to check and which runtime exceptions

to handle. Nevertheless, it would be useful for a user to see related API usage along with

concrete examples substantiating the desirable API usage, when the user is browsing the

given SO post. Such information may reduce the effort of integrating, adapting, and testing

the given code example. In this section, we present a Chrome extension that we design to

augment a given SO post with mined API usage patterns.

5.6.1 Tool Features and Implementations

This section describes the tool implementation details of ExampleCheck. Figure 5.7 shows

the architecture of ExampleCheck. The API usage mining process is computed offline

18http://stackoverflow.com/questions/21983867
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Figure 5.7: An overview of ExampleCheck’s architecture

and the resulting patterns are stored in a database. The technical details and evaluation

of API usage mining technique is presented in our ICSE 2018 paper [264]. When a user

loads a Stack Overflow page in the Chrome browser, the Chrome extension extracts code

snippets within <code> tags in answer posts, and sends them to the back-end server. The

back end then detects API usage violations in a snippet and synthesizes warning messages

and corresponding fixes. For each misused method call in a snippet, the Chrome extension

generates a pop-up window using the Bootstrap popover plug-in19 to inform the user about

the API misuse information.

API Usage Mining and the Resulting Pattern Set. Our mining technique in [264]

leverages a distributed software mining infrastructure [66] to search over the corpus of 380K

GitHub projects. Given an API method of interest, it identifies code fragments that use the

same method in the GitHub corpus and performs program slicing to remove statements that

are not related to the given method. Then it combines frequent subsequence mining and

SMT-based guard condition mining to retain important API usage features, including the

temporal ordering of related API calls, enclosing control structures, and guard conditions

that protect an API call. We evaluated the mining technique using 30 API methods from

MUBench [26]. Our mining technique has 80% precision and 91% recall, when considering

top 5 patterns for each API method.

In Section 5.5, we mined API usage patterns of 100 popular Java API methods and care-

fully inspected 245 inferred patterns based on online documentation. As a result, we curated

a dataset of 180 validated, correct patterns for API misuse detection, which covers API us-

19https://www.w3schools.com/bootstrap/bootstrap popover.asp
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ages shown in 217K SO posts in Java. These patterns are represented as API call sequences

with surrounding control constructs. Each API call is also annotated with its argument types

and guard conditions. For example, one pattern, loop {; get(int)@arg0<rcv.size(); },

checks if the index is out of bounds when calling the get method on an ArrayList object.

API Misuse Detection. Given a code snippet sent from the browser, the server first

extracts the API call sequence from the snippet. We use a partial program analysis and type

resolution technique [224] to parse incomplete snippets and resolve ambiguous types. If a

SO snippet has multiple methods, ExampleCheck inlines the call sequence of an invoked

method into the sequence of the caller to emulate a lightweight inter-procedural analysis.

ExampleCheck then queries the pattern database for the API calls present in each API

call sequence. Given an API call sequence and an API usage pattern, it checks whether (1)

the API calls and control constructs in the sequence follow the same temporal order in the

pattern, and (2) the guard condition of an API call in the sequence implies the guard of the

corresponding API call in the pattern. ExampleCheck uses a SMT solver, Z3 [60], to check

whether one guard condition implies another. ExampleCheck is capable of detecting three

types of API usage violations—missing control constructs, missing or incorrect order of API

call, and incorrect guard condition.

Table 5.7: Warning message templates for different types of API usage violations. <?> and

<before/after> are instantiated based on API usage violations and correct patterns. The

digits in the last column are the SO post ids of the warning examples.
Violation Type Description Template Example Warning Message

Missing/Incorrect Order of API calls You may want to call <?> <before/after> calling <?>
You may want to call TypedArray.recycle() after calling

TypedArray.getString(). [ 35784171 ]

Missing Control Constructs You may want to call the API method <?> in <?> You may want to call Cursor.close() in a finally block. [ 31427468 ]

Missing Try-Catch
You may want to handle the potential <?> exception thrown

by <?> using a try-catch block

You may want to handle the potential SQLException thrown by

PreparedStatement.setString() using a try-catch block. [ 11183042 ]

Incorrect Guard Conditions You may want to check whether <?> is true before calling <?> You may want to check whether iterator.hasNext() is true. [ 25789601 ]

Warning Message Generation. Given an API usage violation and the correct pat-

tern, ExampleCheck generates a warning message that describes the violation in natural

language text. Table 5.7 shows the warning message templates for different types of API

usage violations. In each template, <?> is instantiated with the corresponding API calls

or control constructs based on the detected API usage violation and the correct pattern.
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� Pop-up window

� API misuse description

� Fix suggestion

� Like or dislike

� Supporting GitHub 
examples

� Pagination for multiple misuses

Figure 5.8: The ExampleCheck Chrome extension that augments Stack Overflow with

API misuse warnings. The pop-up window alerts that match number can be null if

the requested JSON attribute does not exist and will crash the program by throwing

NullPointerException when getAsString is called on it.

<before/after> is instantiated based on the relative order of the two API calls in the correct

pattern. The warning messages also describe which exception types are not handled in the

snippets detected with missing try-catch violations. To help users understand the prevalence

of a recommended API usage pattern, the warning message also quantifies how many other

code fragments follow the same pattern in GitHub.

Fix Suggestion. ExampleCheck further suggests a correct way of using an API method

by synthesizing a readable fixed snippet based on the original SO snippet. ExampleCheck

first matches each API call in the recommended API usage pattern with the given SO

snippet. If an API call is matched, ExampleCheck reuses the same receiver object and

arguments of the corresponding API call from the original SO snippet in the synthesized

snippet. Otherwise, ExampleCheck names the receiver and arguments based on their types.

For example, if the receiver type of an unmatched API call (i.e., a missing-API-call violation)

is File, ExampleCheck names the receiver object as file, the lower case of the receiver

type. In this way, ExampleCheck reduces the mental gap for switching between the original

SO post and the recommended snippet.
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5.6.2 Demonstration Scenario

Suppose Alice wants to read attribute values from a JSON message using Google’s Gson

library. Alice searches online and finds a related Stack Overflow post with an illustrative

code example, as shown in Figure 5.8.20 Though this post is accepted as a correct answer,

it does not properly use the JsonElement.getAsString method, which gets the string

value of a JSON element. For example, if the requested attribute does not exist in the JSON

message, the preceding API call, JsonObject.get will return null, which consequently leads

to NullPointException when calling getAsString on the returned object. If Alice puts

too much trust on this example of the SO post, she may inadvertently follow an unreliable

solution, which might lead to runtime errors in some corner cases.

Alice cannot easily recognize the potential limitation of the given SO post, unless she

manually investigates other similar code examples. ExampleCheck frees Alice from this

manual investigation labor by contrasting a Stack Overflow post with common API usage

patterns mined from over 380K GitHub repositories. ExampleCheck then highlights the

potential API usage violations in the Stack Overflow post. When Alice clicks on a highlighted

API call, ExampleCheck generates a pop-up window with detailed descriptions about the

API usage violation, as shown in Figure 5.8.

API misuse description. To help Alice understand a detected API usage violation,

ExampleCheck translates the violation to a natural language description (¬ in Figure 5.8).

From the warning message, Alice learns that she should check whether the JsonElement

object is null before calling getAsString. ExampleCheck also displays a message that 119

GitHub examples also follow this usage pattern. Such quantification can provide additional

evidence about how many real-world examples are different from the given SO snippet.

Fix suggestion. ExampleCheck further sketches how to correct the violation in the

original SO post, as shown in ® in Figure 5.8. This fix is an embodiment of the correct API

usage pattern in the context of the SO post. To reduce the gap between the fix and the

20https://stackoverflow.com/questions/29860000

21https://goo.gl/YHo1UM
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Figure 5.9: A programmer can view a concrete code example from GitHub that follows a

correct API usage pattern, when clicking on a GitHub example link in the pop-up window.21
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original post, ExampleCheck reuses the same variable names in the original SO posts to

generate a suggestion with improved API usage. For example, the JsonElement variable in

the generated example is named as the same variable, match number in the original post.

Linking GitHub examples. To help Alice understand how the same API method is

used in real-world projects, ExampleCheck provides several GitHub examples that follow

the suggested API usage pattern (° in Figure 5.8). Alice is curious about how others

use JsonElement.getAsString. When she clicks on the link of the first GitHub example,

ExampleCheck redirects Alice to a GitHub page and automatically scrolls down to the Java

method where JsonElement.getAsString is called, as shown in Figure 5.9. Compared with

the simplified SO example in Figure 5.8, this GitHub code is more carefully constructed

with multiple if checks. For example, it not only checks whether the JsonElement object

is null, but also checks whether it is a primitive type to avoid ClassCastException before

calling getAsString. By providing the traceability to concrete code examples in GitHub,

Alice could gain a more comprehensive view of correct API usage in production code, which

may not be illustrated in simplified code examples in Stack Overflow.

User feedback. After investigating the concrete example in GitHub, Alice finds it

necessary to perform a null check. She upvotes the pattern by clicking on the “thumbs-up”

button to notify other users that this detected violation is helpful (¯ in Figure 5.8). Alice

also finds that her decision resonates with the majority of ExampleCheck users, since nine

users also upvoted this violation.

Multiple API usage violations. If a method call in a SO post violates multiple API

usage patterns, ExampleCheck displays them in separate pages in a pop-up window. These

pages are first ranked by the vote score (i.e., upvotes minus downvotes) of each violated pat-

tern, and then by the number of GitHub examples that support a pattern if two patterns have

the same vote score. As shown in ± in Figure 5.8, the method call, getAsString violates

four API usage patterns. Figure 5.10 shows the second violated pattern and suggests Alice

to check whether the JsonElement object represents a JSON primitive value before calling

getAsString. Otherwise, getAsString will throw ClassCastException. ExampleCheck

also suggests Alice to wrap getAsString with a try-catch block to handle potential excep-
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Figure 5.10: Another API usage warning that reminds programmers to check whether the

JsonElement object represents a JSON primitive value by calling isJsonPrimitive. It also

suggests to catch potential exceptions thrown by getAsString.

tions. This pattern is supported by 48 GitHub examples.

5.7 Threats to Validity

In terms of external validity, our study is limited to 100 Java APIs that frequently appear in

Stack Overflow and thus may not generalize to other Java APIs or different languages. Our

scope is limited to code snippets found on Stack Overflow. Other types of online resources

such as programming blogs and other Q&A forums may have better curated examples.

ExampleCheck may overlook or mis-identify API misuses due to the limitations discussed

in Section 5.5.2. According to the manual inspection of 400 sampled SO posts with detected

API usage violations, ExampleCheck detects API misuse with 72% precision (Section 5.5.2).

While the precision is rather low, ExampleCheck could be still useful in the case of false

positives, since the goal of ExampleCheck is not to discard SO posts with potential API

violations, but rather to suggest desirable or alternative API usage details to the users.

In terms of construct validity, we only assess the reliablity of online code examples in

terms of API misuses. The reliability of online code examples can be affected by other issues
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such as logic bugs and performance bugs. However, it is still inspiring to demonstrate the

prevalence and severity of API misuses in online code examples. This empirical study can be

extended beyond API misuses by integrating online code examples to real-world programs

and assessing their runtime impacts.

5.8 Summary

This chapter presents ExampleCheck, the first API usage mining technique that scales to

380K Java projects on GitHub. ExampleCheck captures a variety of API usage semantics

including control structures, exception handling logic, guard conditions, and the temporal

ordering of API calls. Using the common API usage patterns mined from GitHub, we conduct

an empirical study of 220K Stack Overflow posts and find that almost 31% of these posts

have potential API usage violations that could produce anomalies such as program crashes

and resource leaks if reused to a target program as-is.

Certainly, the purpose of Stack Overflow is to provide a starting point for investigation

and its code examples do not necessarily include all details of how to reuse the given code.

However, for novice developers, it may be useful to show extra tips about desirable API

usage evidenced by a large number of GitHub snippets. Based on this insight, we further

develop a Chrome extension that warns about API misuse in online code snippets and

suggests corresponding fixes in a browser. Our work provides a foundation for enriching and

enhancing code snippets in a collaborative Q&A forum by contrasting them against frequent

usage patterns learned from massive code corpora.
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CHAPTER 6

Visualizing Common and Uncommon API Usage at

Scale

The previous chapter focuses on mining frequent API usage patterns from massive code

corpora. Given the variety of API usage scenarios in practice, some infrequent API usage

may still be semantically correct in specific contexts. It is valuable for developers to explore

different API usage in a diverse set of usage scenarios. However, there is no easy way for de-

velopers to understand the commonalities and variations in a large number of relevant code

examples. In this chapter, we present an interactive visualization for exploring a large col-

lection of code examples mined from open-source repositories without sacrificing the ability

to drill down to concrete details.

6.1 Introduction

Learning how to correctly and effectively use existing APIs is a common task—and a core

challenge—in software development. The greatest obstacle to learning an API is “insufficient

or inadequate examples.” [195] Official documentation is typically dominated by textual de-

scriptions and explanations, often lacking concrete code examples that illustrate API usage.

Tutorials and blog posts walk developers through simplified code examples but often with-

out demonstrating alternative uses of an API, which programmers frequently desire when

learning unfamiliar APIs [50, 63, 195]. Code-sharing sites like GitHub hold the promise of

documenting all the common and uncommon ways of using an API in practice, including

many alternative usage scenarios that are not typically shown in curated examples. However,

given the large amount of code available online, it is challenging for developers to efficiently
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browse the enormous volume of search results. In practice, programmers often investigate

a handful of search results and return to their own code due to limited time and atten-

tion [48,63,218]. Prior work has shown that individual code examples may suffer from API

usage violations [264], insecure coding practices [73], unchecked obsolete usage [268], and

comprehension difficulties [235]. Therefore, inspecting a few examples may leave out critical

safety checks or desirable usage scenarios.

In the software engineering community, there is a growing interest in leveraging a large

collection of open source repositories—so called Big Code—to automatically infer API usage

patterns from massive corpora [50,170,244,267]. However, these API usage mining techniques

provide limited support to help programmers explore concrete code examples from which API

usage patterns are inferred, and understand the commonalities and variances across different

uses. To bridge the gap, we aim to visualize hundreds of concrete code examples mined

from massive code corpora in a way that reveals their commonalities and variances, and

design a navigation model to guide the exploration of these examples. We draw motivation

from prior work on visualizing large corpora of related documents, e.g., student coding

assignments [85], text [209,249], and image manipulation tutorials [174], to pose the following

research question: How might we extract, align, canonicalize, and display large numbers of

usage examples for a given API?

In this chapter, we introduce a novel interactive visualization and navigation technique

called Examplore that (1) gives a bird’s-eye view of common and uncommon ways in which

a community of developers uses an API and (2) allows developers to quickly filter a corpus for

concrete code examples that exhibit these various uses. It operates on hundreds of code ex-

amples of a given API method, which can be automatically mined from open-source projects

or proprietary codebases. It is designed to supplement existing resources: for example, while

Stack Overflow can provide explanations and discussions, Examplore provides quantitative

information about how an API call is used in the wild.

Examplore instantiates a synthetic code skeleton that captures a variety of API usage

features, including initializations, enclosing control structures, guard conditions, and other

method calls before and after invoking the given API method, etc. This skeleton is designed
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to be general: it is grounded in how API design is taught in software engineering curricula and

how API mining researchers conceptualize their tasks [63, 127, 195]. Examplore visualizes

the statistical distribution of each API usage feature in the skeleton to provide quantitative

evidence of each feature in the corpus. The user can select one or more features in the

skeleton and, by dynamically filtering mined code examples from the corpus, drill down to

concrete, supporting code examples. Color-coordinated highlighting makes it easier for users

to recognize the correspondence between features in the skeleton and code segments within

each example.

We conducted a within-subjects lab study where we asked sixteen Java programmers

of various levels of expertise to answer questions about the usage of particular Java APIs

based on either (1) searching online for relevant code examples, blogs, and forum posts or

(2) using Examplore to explore one hundred API usage examples mined from GitHub. On

average, participants answered significantly more API usage questions correctly, with more

concrete details, using Examplore. This suggests that Examplore helps users grasp a

more comprehensive view of API usage than online search. In a post survey, the majority of

participants (13/16) found Examplore to be more helpful for answering API usage questions

than online search, and when using Examplore, their median level of confidence in their

answers was higher.

Our contributions are:

• a method for generating an interactive visualization of a distribution of code examples

for a given API call

• an implementation of this interactive visualization for a set of Java and Android API

calls

• a within-subjects lab study that shows how this interactive visualization may fill an

important role in developers’ programming workflows as they use unfamiliar APIs.
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Figure 6.1: (a) The layout of our general code skeleton to demonstrate different aspects of

API usage. The skeleton structure corresponds to API design practice. (b) A screen snapshot

of Examplore and its features, derived from 100 mined code examples for FileInputStream.

The first six of those 100 code examples are visible on the right.

6.2 Constructing Synthetic API Usage Skeleton

To visualize and navigate a collection of code examples in the order of hundreds or thousands,

we introduce the concept of a synthetic code skeleton, which summarizes a variety of API

usage features in one view for ease of exploration. Its design is inspired by previous studies on

the challenges and obstacles of learning unfamiliar APIs. Duala-Ekoko and Robillard argue

that a user must understand dependent code segments—object construction, error handling,

and interaction with other API methods—related to an API method of interest [63]. Ko

et al. found that programmers must be aware of how to use several low-level APIs together

(i.e., a coordination barrier); how to invoke a specific API method with valid arguments; and

how to handle the effects of the method (i.e., a use barrier) [127]. Figure 6.1(a) shows the

layout of the code skeleton in the Examplore interface.
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The skeleton is composed of the following seven API usage features that can co-occur

with a common focal API method call that is of interest to the user:

1. Declarations Prior to calling the focal API method, programmers may construct a

receiver object and initialize method arguments.

2. Pre-focal method calls Developers may need to configure the program state of the

receiver object or arguments by calling other methods before the focal API method

call. For example, before calling Cipher.doFinal to encrypt or decrypt a message,

programmers must call Cipher.init to set the operation mode and key. Otherwise,

doFinal will throw IllegalStateException, indicating that the cipher has not been

configured.

3. Guard Developers often need to check an appropriate guard condition before the focal

API call. For example, before calling Iterator.next, programmers can check that

Iterator.hasNext returns true to make sure another element exists, before calling

Iterator.next to retrieve it.

4. Return value check Developers often need to read the return value of the focal

API method call. For example, Activity.findViewById(id) returns null if the id

argument is not valid. For API methods that may return invalid objects or error codes,

programmers must check the return value before using it to avoid exceptions.

5. Post-focal method calls Developers may make follow-up method calls on the receiver

object or the return value after calling the focal API method. For example, after calling

Activity.findViewById to retrieve a view from an Android application, programmers

may commonly call additional methods on the returned view, like setVisibility or

setBackground, to update its rendering.

6. Exception handling For API methods that may throw exceptions, programmers may

consider which exception types to handle and how these exceptions are handled in a

try-catch block.
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7. Resource management Many Java API methods manipulate different types of re-

sources, e.g., files, streams, sockets, and database connections. Such resources must be

freed to avoid resource leaks. A common practice in Java is to clean up these resources

in a finally block to ensure these resources are freed, even in case of errors.

This skeleton design targets API usage in Java. All the components of the skeleton are

standard aspects of Java API design and usage known to the software engineering commu-

nity [63,127,195]. In other words, the skeleton is the reification of domain knowledge among

those who design, teach about, and do research on Java APIs.

This skeleton can be generalized to similar languages like C++ and C#. Some compo-

nents captured by the skeleton, e.g., conditional predicates guarding the execution of an API

call, are expected to generalize to many other languages. Additional components may be

necessary to capture API usage features in other programming paradigms, e.g., functional

programming.

6.3 Usage Scenario: Interacting with Code Distribution

Examplore is designed to help programmers understand the common and uncommon usage

patterns of a given API call. Let’s consider Victor, a developer who wants to learn how to

use FileInputStream objects in Java. Examplore shows one hundred code examples mined

from GitHub that include at least one call to construct a FileInputStream object.

The right half of the screen shows all mined examples, sorted from shortest to longest.

Victor can quickly pick out the FileInputStream constructor in each example because they

are each highlighted with the same blue color as the header of the focal API section of the

code skeleton (± in Figure 6.1). Each section of the skeleton has a distinct heading color,

which is used to highlight the corresponding concrete code segments in each code example,

e.g., initializing declarations in red, guards in light orange. This is designed to reduce the

cognitive load of parsing lots of code, and allows Victor to more easily identify the purpose

of different portions of code within each example.
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Figure 6.2: As revealed by Examplore, programmers most often guard this API call by

checking first if the argument exists.

Examplore reveals, by default, the top three most common options for each section of

the skeleton (Æ in Figure 6.1). Victor notices that, based on the relative lengths of the

blue bars aligned with each option for calling FileInputStream, passing a File object as the

argument is twice as likely as passing fileName, a String. By looking at the guard condition

options within the if section in Figure 6.2, Victor can see how other programmers typically

protect FileInputStream from receiving an invalid argument. He can also tell, by the small

size of the blue bars aligned with these expressions, that these most popular guards are still

not used frequently, overall. If he wants to see more or fewer options per skeleton section,

he can click the “Show More” or “Show Less” buttons, or explore the long tail of the corpus

by clicking “Show All” (¯ in Figure 6.1).

Victor is interested in exploring and better understanding the less common FileInputStream

constructor, which takes a String argument representing a file name. Victor clicks on the

radio button next to stream = new FileInputStream(fileName). The active filters (° in

Figure 6.1) are updated and the right-hand side of the screen now only lists code examples

that construct a FileInputStream with a String.

Feature options in the skeleton view are pruned and updated based on Victor’s selection

(Figure 6.3). Since the selected FileInputStream constructor takes a String argument

instead of a File object, the options that declare and initialize the File object disappear.

The counts of the remaining co-occurring options are affected: the total, unfiltered counts
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Figure 6.3: The bars now show total counts (pastel) and counts conditioned on filtering for

the selected option (darker), stream = new FileInputStream(fileName). Options that do

not co-occur with the selected option are hidden.

Figure 6.4: A screen snapshot taken while answering the question “What guards do pro-

grammers in this dataset use to protect stream = new FileInputStream(file)?” The red

arrows point to the user’s selections and corresponding filtered code elements that answer

this question.
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Figure 6.5: The active filters are updated and the code examples in the list reflect Victor’s

selection of the skeleton option stream = new FileInputStream(fileName).

shown in pastel bars are unchanged, but darker bars are super-imposed, showing the new

counts for the subset of examples in the corpus that construct FileInputStream with a

String.

Victor realizes that there is one place in his project where it will be a hassle to get a file

name. He will need to use the other version of FileInputStream constructor that takes a

File object instead. He wonders what guards other programmers use to prevent problems

when constructing a FileInputStream this way. As shown in Figure 6.4, by clicking on

the radio button next to stream = new FileInputStream(file) and the check box for the

enclosing if block, he filters the skeleton options and concrete code examples down to just

those with the guards he is interested in. He clicks “Show All” to see all the guard options in

the corpus, from the most common guards like file.exists() to more unusual guards like

file.isFile(). He was not aware that the File object has an isFile() method. He scrolls

through a few of the concrete code examples on the right-hand side of the screen to confirm

that he understands how these guard conditions are expressed in other programmers’ code,

and then continues his task of creating well-guarded FileInputStream objects in his own

code.
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Figure 6.6: Examplore system architecture.

6.4 System Architecture and Implementation

Examplore retrieves and visualizes hundreds of usage examples for a given API call of

interest in three phases, shown in Figure 6.6. In the Data Collection phase, Examplore

leverages the API usage mining framework in ExampleCheck [264] to crawl 380K GitHub

repositories and retrieve a large number of code examples that include at least one call to

the API method call of interest. In the Post-processing phase, Examplore analyzes the

code examples, labels the segments of code that correspond to each API usage feature in the

skeleton, and then extracts and canonicalizes those segments of code to populate the options

for each feature in a MongoDB database. In the Visualization phase, Examplore renders the

code skeleton, including the canonicalized options for each feature and their distribution in

the corpus, and highlights the code segments within each mined code example from which the

canonicalized options were extracted. The user interacts with the visualization by selecting

features and specific options to filter by.

6.4.1 Data Collection

Here, we briefly summarize the mining process in [?] to describe the format of resulting code

example data used in Examplore. Given an API method of interest, the mining process first

traverses the abstract syntax trees of Java files and locates all methods invoking the given API

method by leveraging ultra-large-scale software repository analysis infrastructure [66]. For

each scanned method, the mining technique uses program slicing to remove code statements

irrelevant to the API method of interest. For example, when the API method of interest is

the constructor of FileInputStream on line 12 in Figure 6.7, only underlined statements
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1 @RequestMapping(method = RequestMethod.POST)

2 public void download(String fName, HttpServletResponse response, HttpSession session) {

3 if (fName == null) {

4 log.error("Invalid File Name");

5 return;

6 }

7 String path = session.getServletContext().getRealPath("/")+fName;

8 response.setContentType("application/stream");

9 response.setHeader("Content-Disposition", "attachment;filename=" + fName);

10 File file = new File(path);

11 try {

12 FileInputStream in = new FileInputStream(file);

13 ServletOutputStream out = response.getOutputStream();

14 byte[] outputByte = new byte[4096];

15

16 while (in.read(outputByte, 0, 4096) != -1) {

17 out.write(outputByte, 0, 4096);

18 }

19 } catch (FileNotFoundException e) {

20 e.printStackTrace();

21 } catch (IOException e) {

22 e.printStackTrace();

23 } finally {

24 in.close();

25 out.flush();

26 out.close();

27 }

28 }

Figure 6.7: This method is extracted as an example of FileInputStream from the GitHub

corpus. Only the underlined statements and expressions have data dependences on the focal

API call to new FileInputStream at line 12.
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and expressions in lines 10, 16, and 24 are retained, as these have direct data dependences

on the focal API call at line 12. In addition to filtering relevant statements based on direct

data dependences, Examplore also identifies enclosing control structures such as try-catch

blocks and if statements relevant to the focal API call. A control structure is related to a

given API call if there exists a path between the two and the API call is not post-dominated

by the control structure [25]. In Figure 6.7, the API call to new FileInputStream (line 12) is

related to the enclosing try-catch-finally block at lines 11 and 19-27 and the preceding if

statement at line 3. Such control structure information is used to extract API usage features

about guard conditions, return value checks, and exception handling. In each scanned code

example, each variable or object name is annotated with its static type information, which

Examplore uses when canonicalizing variable names within the code skeleton.

6.4.2 Post-processing

Examplore normalizes the retrieved set of code examples into a canonical form so that

the user can easily view relevant API usage features without the need to handle different

syntactic structures and different concrete variable names. Concrete options for each API

usage feature are stored in a MongoDB database so that the front end can construct a

database query and update the interface based on user selections.

Normalization of Chained Calls. To help developers easily recognize a sequence of method

calls, Examplore rewrites chained method calls for readability. Specifically, it separates

chained method calls to different method calls by introducing temporary variables that store

the intermediate results. For example, new FileInputStream(new File(path)).read(...)

is rewritten to file = new File(path); fileInputStream = new FileInputStream(file);

fileInputStream.read(...);.

Canonicalizing Variable Names. To reduce the cognitive effort of recognizing semantically

similar variables that are named differently in different examples, Examplore renames the

arguments of the focal API call based on the corresponding parameter names declared in the

official Javadoc documentation so that all variable names follow the same naming convention.
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The rest of the variables are renamed based on their static types. For example, if the type

of the receiver object is File, we rename its object name to be file, the lower CamelCase

of the receiver type.

Consider the example in Figure 6.7 where the constructor FileInputStream(File) is

the focal API call. The following list describes the concrete code segments corresponding to

different API usage features:

• Declarations: File file = new File(path) at line 10.

• Pre-focal method calls: none.

• Guard: the negation of fName == null at line 3.

• Return value check: none.

• Post-focal method calls: in.read(outputByte,0,4096)!=-1 at line 16.

• Exception handling: e.printStackTrace() for handling FileNotFoundException at

lines 19-20 and IOException at lines 21-22.

• Resource management: in.close() at line 24.

6.4.3 Visualization

For each API usage feature, Examplore records the start and end character indices of the

corresponding code for color highlighting. Examplore queries the MongoDB database and

instantiates the synthetic code skeleton with canonicalized options extracted from GitHub

code examples and distributions of counts accumulated across the corpus. When a user

selects particular options in the skeleton, the front end queries MongoDB and updates the

interface accordingly.
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6.5 User Study

We conducted a within-subjects study with sixteen Java programmers to evaluate whether

participants could grasp a more comprehensive view of API usage using Examplore, in

comparison to a realistic baseline of searching online for code examples, which is commonly

used in real-world programming workflows [48, 202]. We designed a set of API usage ques-

tions, shown in Table 6.1, to assess how much knowledge about API usage participants

could extract from Examplore or online search for a given API method. Questions Q1-7

were derived from the commonly asked API usage questions identified in prior work [63].

Q8 asked participants to inspect and critique a curated code example from Stack Overflow.

This question was designed to evaluate whether users were capable of making comprehen-

sive judgments about the quality of a given code example after exploring a large number

of examples using Examplore, inspired by Brandt et al.’s observation that programmers

typically opened several programming tutorials in different browser tabs and judged their

quality by rapidly skimming [48].

6.5.1 API Methods

Programmers often behave differently when searching online to learn a new concept compared

to when they are reminding themselves about the details in a familiar concept [48]. Similarly,

we anticipated that programmers might apply different exploration strategies when answering

API usage questions about familiar and unfamiliar APIs. To capture a spectrum of behaviors,

we chose three API methods with which programmers might have varying levels of familiarity:

1. Map.get is a commonly used Java method that retrieves the value of a given key from

a data structure that stores data as key and value pairs.

2. Activity.findViewById is an Android method that gets a specific view (e.g., button,

text area) from an Android application.

3. SQLiteDatabase.query is a database query method that constructs a SQL command

from the given parameters and queries a database.
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API Usage Questions

Q1. How do I create or initialize the receiver object so I can call this API method?

Describe multiple ways, if possible.

Q2. How do I create or initialize the arguments so I can call this API method?

Describe multiple ways, if possible.

Q3. What other API methods, if any, would be reasonable to call

before calling this API method?

Q4. What, if anything, would be reasonable to check before calling this API method?

Q5. What, if anything, would be reasonable to check after calling this API method?

Q6. How do programmers handle the return value of this API method?

Q7. What are the exceptions that programmers catch and how do programmers

handle potential exceptions? Please indicate none if this API method does not throw

any exception.

Q8. How might you modify this code example on Stack Overflow if you were going

to copy and paste it into your own solution to the original prompt?

Table 6.1: Study task questions for participants to answer for each assigned API method.

Q1-7 are derived from commonly asked API usage questions identified by [63]. Q8 prompts

the participant to critique a curated code example from Stack Overflow.

Figure 6.8 shows cropped screenshots of how Examplore rendered each of these APIs.

Figure 6.8: Cropped screenshots of how Examplore renders each of the three APIs included

in the study: (a) Map.get (b) Activity.findViewById (c) SQLiteDatabase.query.
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6.5.2 Participants

We recruited sixteen Computer Science students from UC Berkeley through the EECS de-

partment mailing list. Eleven participants (69%) were undergraduate students and the other

five (31%) were graduate students. Since our study task required participants to read code

examples in Java and answer questions about Java APIs, we only included students who had

taken at least one Java class. Participants had a diverse background in Java programming,

including one participant with one semester of Java programming, four with one year, ten

with two to five years, and one with over five years. Two students were teaching assistants

for an object-oriented programming language course. Prior to the study, twelve participants

(75%) had used Map or similar data structures, six (38%) had used SQLiteDatabase.query

or similar database query methods, and only three (19%) had used Activity.findViewById.

6.5.3 Methodology

We conducted a 50-min user study with each participant. Note that our study follows a

within-subjects design and both the order of the assigned conditions (using online search

or Examplore to answer API usage questions) and which of the three API methods were

assigned in each condition (Map.get, Activity.findViewById, or SQLiteDatabase.query)

were counterbalanced across participants through random assignment.

1. Training session (15 min) We first walked the participant through a short list of

relevant Java concepts and terminology, such as receiver objects and guards. Then

we walked participants through each user interface feature and answered participants’

questions about both the concepts and the interface.

2. Code exploration task 1 (15 min) The participant was given basic information

about one of the three API methods and asked to answer API usage questions Q1-8 by

exploring code examples using the assigned tool, either online search or Examplore.

3. Code exploration task 2 (15 min) The participant was given basic information

about another one of the three API methods and asked to answer API usage questions
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Q1-8 by exploring code examples using the tool (Examplore or online search) that

they did not use in the previous task.

4. Post survey (5 min) At the end of the session, participants answered questions about

their experience using each tool and the usability of individual user interface features

in Examplore.

In the control condition, participants were allowed to search for code examples in any

online learning resources, e.g., documentations, tutorial blogs, Q&A forums, and GitHub

repositories, using any search engines in a web browser. In the experimental condition,

participants used Examplore to explore one hundred code examples that were pre-loaded

into the system.

Some of the API usage questions have multiple possible correct answers. Before each

code exploration task, we reminded participants that they had 15 minutes to complete the

API usage questions and that they should aim for thoroughness (i.e., list multiple correct

answers if they exist) instead of speed when answering these questions.

6.6 Results

6.6.1 Quantitative Analysis

6.6.1.1 Answering Commonly Asked API Usage Questions

We manually assessed the participants’ answers to Q1-8. An answer was considered concrete

if it contained a code segment, e.g., map.containsKey(key), or it was specific, e.g., “check

whether the key exists.” As a counter example, a vague answer to the question about how

programmers handle the return value of Map.get (Q6) was, “[other programmers] do some-

thing with the return value [of Map.get].” We considered a concrete solution to be correct

if it could be confirmed by the official documentation, blogs, or concrete code examples.

Table 6.2 shows statistics about participants’ correct answers to Q1-7 when using online

search or the Examplore tool. We find that the effects of using Examplore are both
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Map Activity SQLiteDatabase Overall

Tool Search Tool Search Tool Search Tool Search

Ave. # of Q’s answered correctly 5.0 6.0 6.3 5.0 6.6 3.8 6.0 4.6

Ave. total # of correct answers 8.2 6.0 12.5 4.7 14.6 5.4 11.8 5.7

Ave. # of correct answers per Q 1.6 1.2 2.0 1.1 2.2 1.4 1.8 1.2

Table 6.2: Statistics about participants’ correct answers to Q1-7. Search refers to partici-

pants in the control condition, and Tool refers to those using Examplore.

meaningful in size and statistically significant: Users gave, on average, correct answers to 6

out of 7 API usage questions using Examplore vs. 4.6 questions using the baseline of online

search. This mean difference of 1.3 questions out of 7 is statistically significant (paired t-test:

t=3.02, df=15, p-value=0.0086).

Screencasts of the user study sessions reveal that participants in the control condition

often answered API usage questions just based on one example they found or by guessing.

In contrast, Examplore users interacted with the code skeleton and investigated many

individual examples that were relevant to the question. This may explain why, in Table 6.2,

Examplore users gave, on average, twice as many correct answers to Q1-7 as baseline users

(11.8 vs. 5.7, paired t-test: t=3.84, df=15, p-value=0.0016).

Participants using online search provided almost twice as many vague answers as par-

ticipants using Examplore. When answering Q6 (How do programmers handle the return

value of this API method?), two participants using online search were unable to find any ex-

amples that check the return value of Activity.findViewById, while all participants gave

the correct answer using Examplore.

6.6.1.2 Critiquing Stack Overflow Answers

Q8 asked participants to critique a code example from Stack Overflow based on other relevant

code examples they explored in the study. Regardless of whether participants had just

used Examplore or online search, fourteen participants (88%) gave valid suggestions to
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improve the Stack Overflow posts. The majority of critiques (80%) written by participants

using Examplore were about safety checks, e.g., how to handle potential exceptions in a

try-catch block. When using online search, the majority of participants (57%) suggested

how to customize and style the code example for better readability, e.g., adapting types and

parameters when reused to a new client program, renaming variables, and indenting code.

6.6.1.3 Post Survey Responses

In the post survey, 13 participants (81%) found Examplore to be more helpful for answering

API usage questions than online search. The distribution of their responses on a 7-point scale

is shown in Figure 6.9. The median level of confidence that participants had in their answers

was higher when using Examplore (5 vs. 4 on a 7-point scale, shown in Figure 6.10).

Figure 6.11 suggests that Examplore’s representation of the commonalities and differences

across 100 code examples is more helpful than overwhelming (5 vs. 3.5 on a 7-point scale).

One source of participants’ accuracy, thoroughness, and confidence when using Exam-

plore appears to be the data itself, presented in structured form: P16 wrote, “[Examplore]

provided structure to learning about API. This structure guides functionality while still

showing variety of use. The frequency of [each option] shows me if I am looking at a random

corner case or something commonly used.” However, explanations in natural language are

still valued. For example, two participants requested textual explanations alongside concrete

code examples. P7 stated that, “although I definitely took longer with the online search,

I felt more confident in knowing what I was doing because I had access to Stack Overflow

explanations.”

6.6.2 Qualitative Analysis

We coded participants’ free responses in the post survey for common recurring patterns. By

far the most popular interface feature named in their free responses (13/16) was the ability

to filter for specific API usage aspects of code examples, e.g., declarations, guards, and

co-occurring API calls. The second most popular feature (4/16) was the ability to explore
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many examples simultaneously in a summarized form. The long tail of responses included

appreciation for the ease of finding relevant examples (3/16), the use of color to label different

parts of each code example (2/16), being able to perceive and retrieve a variety of examples

within a skeleton (2/16), which also gave structure to learning (2/16) and counts to indicate

common practices (1/16).

Figure 6.9: The majority of participants found Examplore more helpful for answering API

usage questions.

Figure 6.10: When using Examplore, participants had more confidence in their answers to

API usage questions.

Several critical aspects of Examplore were highlighted by their absence in the control

condition, i.e., online search. Nearly half (7/16) wrote that they wished traditional search

had better filtering mechanisms, like Examplore provided, so that participants could retrieve

more consistently relevant results and/or filter on a more fine-grained basis. A quarter of

participants (4/16) complained that they had to mentally parse code examples from the
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Figure 6.11: Participants’ median level of agreement with the statement that Examplore’s

high-level view of API usage examples was helpful was higher than their median level of

agreement with a statement that it was overwhelming.

on-line search results. Three participants complained that they cannot easily assess how

common and uncommon the code examples found through Google or GitHub searches are:

P3 wrote, “One thing that is important is ‘best practice’ which you might not get from

reading random code online, so if I had a way to know what is common and uncommon, that

would be useful.” One participant pointed out that Google and GitHub searches did not

make it easy to view multiple examples at once: while it was relatively easy to spot the use

of the API call of interest in each code example, ”it was hard to find the specific instances of

API usage categories other than the Focus because the examples would use different names

for different variables.”

Participants did point out several areas where the interface could be improved. Half of

the participants stated that the interface was confusing and hard to learn. Three of the

sixteen participants felt confused or distracted by the many colors used to highlight different

parts of the code examples that corresponded with the skeleton. Participants wished for not

just filtering but search capabilities in the interface, and for textual explanation to be paired

with the code, like the curated and explained examples in many online search results. Two

participants asked for a more explicit indicator of code example quality, beyond frequency

counts.

The final question of the post survey asked participants to write about how Examplore
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could fit into their programming workflows. Without any prior questions or prompting about

API learning, nearly half the participants (7/16) wrote that they would use Examplore to

explore and learn how to use an unfamiliar API. For example, P4 wrote “[U]sing [Examplore]

to search for usage of unfamiliar methods could be very helpful.” One quarter of the partici-

pants mentioned Examplore would be helpful to augment the code browsing mechanism in

Q&A sites like Stack Overflow. Two participants wrote specifically about using Examplore

to learn about design alternatives for an API, regardless of their prior familiarity with it.

Two participants mentioned that they could consult it for certain specific questions, e.g.,

what exceptions are commonly caught. Finally, one participant pointed out that they could

use Examplore to remind them of uncommon usage cases. Several participants asked the

experimenter, after submitting their post survey answers, whether Examplore would be

made publicly available, expressing a sincere desire to use it in the future.

6.7 Threats to Validity

Our study explored if Examplore can help users explore and understand how an API method

is used. The results show that, when using Examplore instead of online search engines, users

can answer more API usage questions correctly, with more confidence, concrete details, and

alternative correct answers.

The Examplore interface appears to be most beneficial when learning and exploring

unfamiliar APIs. Participants expressed, in free-response survey answers, the desire to use

Examplore to explore unfamiliar APIs in the future. Also, the benefits of using Examplore

described in Table 6.2 are most pronounced for the APIs that participants were, in aggregate,

least familiar with: Activity.findViewById and SQLiteDatabase.query. In contrast, for

the API that most participants were already familiar with, Map.get, participants answered

one less question correctly on average, compared to online search. Existing online search

provided a familiar and flexible search interface as well as the ability to access learning

resources with textual explanations such as Stack Overflow posts, documentation, and blog

posts. Even so, participants still provided two more concrete solutions on average, when
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using Examplore for Map.get, indicating that Examplore can still be helpful to provide a

more comprehensive view of API usage even for familiar APIs.

The study results suggest that programmers can develop a more comprehensive under-

standing of API usage by exploring a large collection of code examples visualized using

Examplore than by searching for relevant examples online. However, there is a trade-off

between the Examplore interface’s expressive power and its visual complexity. We have a

lot of information about how APIs are used, but showing all of it at once can be overwhelm-

ing. More research is needed in making sure the most common use cases are answered in

a visually simple and easy-to-interpret manner, while still supporting more complex inves-

tigations. This could, for example, be achieved through progressive disclosure or other UI

design patterns.

Examplore does not require all mined code examples to be bug-free. We expect that

inadequate examples occur less frequently in the majority of mined code, i.e., the “wisdom of

the crowd,” but we do not currently guard against stale examples or low-quality examples.

Possible ways of detecting stale examples in the future include analyzing metadata and

scanning for outdated method signatures. Even if all examples in the corpus are of equally

high quality, sorting the concrete code examples by length, as the interface currently does,

is not necessarily what programmers want. Alternative sorting criteria could include metrics

like GitHub stars, number of contributors, and build status. We will surface these signals in

the future user interface so users have additional information scent when judging quality.

6.8 Conclusion

This chapter presents Examplore, an interactive visualization for exploring a large collec-

tion of code examples mined from open-source repositories at scale. Examplore is the first

approach that is capable of visualizing hundreds of relevant code examples in a single view

without sacrificing the ability to drill down to concrete details. The key enabler of Exam-

plore is a synthetic API usage skeleton that demonstrates distinct API usage features with

statistical distributions for canonicalized statements and structures enclosing an API call.
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We implement this interactive visualization for a set of Java APIs and find that, in a lab

study, Examplore helps users answer significantly more API usage questions correctly and

comprehensively, and explore how other programmers have used an unfamiliar API.
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CHAPTER 7

Analyzing and Supporting Adaptation of Online Code

Examples

The API misuse study in Chapter 5 implies that online code examples are often incomplete

and inadequate for developers’ local program contexts. Adaptation of these examples is

necessary to integrate them to production code. As a consequence, the process of adapting

online code examples is done over and over again, by multiple developers independently. This

chapter presents a large-scale empirical study about the nature and extent of adaptations

and variations of code snippets in Stack Overflow, serving as the basis for a tool that helps

integrate these online code examples in a target context in an interactive manner.

7.1 Introduction

Nowadays, a common way of quickly accomplishing programming tasks is to search and

reuse code examples in online Q&A forums such as Stack Overflow (SO) [48, 81, 238]. A

case study at Google shows that developers issue an average of twelve code search queries

per weekday [202]. As of July 2018, Stack Overflow has accumulated 26M answers to 16M

programming questions. Copying code examples from Stack Overflow is common [39] and

adapting them to fit a target program is recognized as a top barrier when reusing code

from Stack Overflow [255]. SO examples are created for illustration purposes, which can

serve as a good starting point. However, these examples may be insufficient to be ported

to a production environment, as previous studies find that SO examples may suffer from

API usage violations [264], insecure coding practices [73], unchecked obsolete usage [268],

and incomplete code fragments [235]. Hence, developers may have to manually adapt code
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examples when importing them into their own projects.

Our goal is to investigate the common adaptation types and their frequencies in online

code examples, such as those found in Stack Overflow, which are used by a large number of

software developers around the world. To study how they are adopted and adapted in real

projects, we contrast them against similar code fragments in GitHub projects. The insights

gained from this study could inform the design of tools for helping developers adapt code

snippets they find in Q&A sites. In this chapter, we describe one such tool we developed,

ExampleStack, which works as a Chrome extension.

In broad strokes, the design and main results of our study are as follows. We link SO

examples to GitHub counterparts using multiple complementary filters. First, we quality-

control GitHub data by removing forked projects and selecting projects with at least five

stars. Second, we perform clone detection [206] between 312K SO posts and 51K non-forked

GitHub projects to ensure that SO examples are similar to GitHub counterparts. Third, we

perform timestamp analysis to ensure that GitHub counterparts are created later than the

SO examples. Fourth, we look for explicit URL references from GitHub counterparts to SO

examples by matching the post ID. As the result, we construct a comprehensive dataset of

variations and adaptations.

When we use all four filters above, we find only 629 SO examples with GitHub counter-

parts. Recent studies find that very few developers explicitly attribute to the original SO

post when reusing code from Stack Overflow [28,39,255]. Therefore, we use this resulting set

of 629 SO examples as an under-approximation of SO code reuse and call it an adaptations

dataset. If we apply only the first three filters above, we find 14,124 SO examples with

GitHub counterparts that represent potential code reuse from SO to GitHub. While this

set does not necessarily imply any causality or intentional code reuse, it still demonstrates

the kinds of common variations between SO examples and their GitHub counterparts, which

developers might want to consider during code reuse. Therefore, we consider this second

dataset as an over-approximation of SO code reuse, and call it simply a variations dataset.

We randomly select 200 clone pairs from each dataset and manually examine the program
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differences between SO examples and their GitHub counterparts. Based on the manual

inspection insights, we construct an adaptation taxonomy with 6 high-level categories and 24

specialized types. We then develop an automated adaptation analysis technique built on top

of GumTree [72] to categorize syntactic program differences into different adaptation types.

The precision and recall of this technique are 98% and 96% respectively. This technique

allows us to quantify the extent of common adaptations and variations in each dataset. The

analysis shows that both the adaptations and variations between SO examples and their

GitHub counterparts are prevalent and non-trivial. It also highlights several adaptation

types such as type conversion, handling potential exceptions, and adding if checks, which

are frequently performed yet not automated by existing code integration techniques [54,253].

Building on this adaptation analysis technique, we develop a Chrome extension called

ExampleStack to guide developers in adapting and customizing online code examples to

their own contexts. For a given SO example, ExampleStack shows a list of similar code

snippets in GitHub and also lifts an adaptation-aware template from those snippets by

identifying common, unchanged code, and also the hot spots where most changes happen.

Developers can interact and customize these lifted templates by selecting desired options to

fill in the hot spots. We conduct a user study with sixteen developers to investigate whether

ExampleStack inspires them with new adaptations that they may otherwise ignore during

code reuse. Our key finding is that participants using ExampleStack focus more on adapta-

tions about code safety (e.g., adding an if check) and logic customization, while participants

without ExampleStack make more shallow adaptations such as variable renaming. In the

post survey, participants find ExampleStack help them easily reach consensus on how to

reuse a code example, by seeing the commonalities and variations between the example

and its GitHub counterparts. Participants also feel more confident after seeing how other

GitHub developers use similar code in different contexts, which one participant describes as

“asynchronous pair programming.”

The rest of the chapter is organized as follows. Section 7.2 describes the data collec-

tion pipeline and compares the characteristics of the two datasets. Section 7.3 describes

the adaptation taxonomy development and an automated adaptation analysis technique.
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Section 7.4 describes the quantitative analysis of adaptations and variations. Section 7.5 ex-

plains the design and implementation of ExampleStack. Section 7.6 describes a user study

that evaluates the usefulness of ExampleStack. Section 7.7 discusses threats to validity,

and Section 7.8 concludes the paper.

7.2 Data Collection: Linking Stack Overflow to GitHub

This section describes the data collection pipeline. Due to the large portion of unattributed

SO examples in GitHub [28, 39, 255], it is challenging to construct a complete set of reused

code from SO to GitHub. To overcome this limitation, we apply four quality-control filters to

underapproximate and overapproximate code examples reused from SO to GitHub, resulting

in two complementary datasets.
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Figure 7.1: Comparison between SO examples in the adaptation dataset and the variation

dataset

GitHub project selection and deduplication. Since GitHub has many toy projects

that do not adequately reflect software engineering practices [120], we only consider GitHub

projects that have at least five stars. To account for internal duplication in GitHub [146], we

choose non-fork projects only and further remove duplicated GitHub files using the same file

hashing method as in [146], since such file duplication may skew our analysis. As a result, we

download 50,826 non-forked Java repositories with at least five stars from GitTorrent [89].

After deduplication, 5,825,727 distinct Java files remain.

Detecting GitHub candidates for SO snippets. From the SO dump taken in October
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2016 [19], we extract 312,219 answer posts that have java or android tags and also contain

code snippets in the <code> markdown. We consider code snippets in answer posts only,

since snippets in question posts are rarely used as examples. Then we use a token-based

clone detector, SourcererCC (SCC) [206] to find similar code between 5.8M distinct Java files

and 312K SO posts. We choose SCC because it has high precision and recall and also scales

to a large code corpus. Since SO snippets are often free-standing statements [223, 259], we

parse and tokenize them using a customized Java parser [224]. Prior work finds that larger

SO snippets have more meaningful clones in GitHub [260]. Hence, we choose to study SO

examples with no less than 50 tokens, not including code comments, Java keywords, and

delimiters. We set the similarity threshold to 70% since it yields the best precision and

recall on multiple clone benchmarks [206]. We cannot set it to 100% since SCC will then

only retain exact copies and exclude those adapted code. We run SCC on a server machine

with 116 cores and 256G RAM. It takes 24 hours to complete, resulting in 21,207 SO methods

that have one or more similar code fragments (i.e., clones) in GitHub.

Timestamp analysis. If the GitHub clone of a SO example is created before the SO post,

we consider it unlikely to be reused from SO and remove it from our dataset. To identify

the creation date of a GitHub clone, we write a script to retrieve the Git commit history

of the file and match the clone snippet against each file revision. We use the timestamp of

the earliest matched file revision as the creation time of a GitHub clone. As a result, 7,083

SO examples (33%) are excluded since all their GitHub clones are committed before the SO

posts.

Scanning explicitly attributed SO examples. Despite the large portion of unattributed

SO examples, it is certainly possible to scan GitHub clones for explicit references such as

SO links in code comments to confirm whether a clone is copied from SO. If the SO link in

a GitHub clone points to a question post instead of an answer post, we check whether the

corresponding SO example is from any of its answer posts by matching the post ID. We find

629 explicitly referenced SO examples.

Overapproximating and underapproximating reused code. We use the set of 629

explicitly attributed SO examples as an underapproximation of reused code from SO to
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GitHub, which we call an adaptation dataset. We consider the 14,124 SO examples after

timestamp analysis as an overapproximation of potentially reused code, which we call a vari-

ation dataset. Figure 7.1 compares the characteristics of these two datasets of SO examples

in terms of the number of GitHub clones, code size, and vote score (i.e., upvotes minus down-

votes). Since developers do not often attribute SO code examples, explicitly referenced SO

examples have a median of one GitHub clone only, while SO examples have a median of two

clones in the variation dataset. Both sets of SO examples have similar length, 26 vs. 25 lines

of code in median. However, SO examples from the adaptation dataset have significantly

more upvotes than the variation dataset: 16 vs. 1 in median. In the following sections, we

inspect, analyze, and quantify the adaptations and variations evidenced by both datasets.

7.3 Adaptation Type Analysis

7.3.1 Manual Inspection and Adaptation Taxonomy

To get insights into adaptations and variations of SO examples, we randomly sample SO

examples and their GitHub counterparts from each dataset and inspect their program dif-

ferences using GumTree [72]. Below, we use “adaptations” to refer both adaptations and

variations for simplicity.

The first and the last authors jointly labeled these SO examples with adaptation descrip-

tions and grouped the edits with similar descriptions to identify common adaptation types.

We initially inspected 90 samples from each dataset and had already observed convergent

adaptation types. We continued to inspect more and stopped after inspecting 200 samples

from each dataset, since the list of adaptation types was converging. This is a typical pro-

cedure in qualitative analysis [45]. The two authors then discussed with the other authors

to refine the adaptation types. Finally, we built a taxonomy of 24 adaptation types in 6

high-level categories, as shown in Table 7.1.

Code Hardening. This category includes four adaptation types that strengthen SO exam-

ples in a target project. Insert a conditional adds an if statement that checks for corner

157



Table 7.1: Common adaptation types, categorization, and implementation

Category Adaptation Type Rule

Code Hardening

Add a conditional Insert(t1, t2, i) ∧ NodeType(t1, IfStatement)

Insert a final modifier Insert(t1, t2, i) ∧ NodeType(t1, Modifier) ∧ NodeValue(t1, final)

Handle a new exception type Exception(e, GH) ∧ ¬Exception(e, SO)

Clean up unmanaged resources (e.g. close a stream) (LocalCall(m, GH) ∨ InstanceCall(m, GH)) ∧ ¬LocalCall(m, SO) ∧ ¬InstanceCall(m, SO) ∧ isCleanMethod(m)

Resolve Compilation

Errors

Declare an undeclared variable Insert(t1, t2, i) ∧ NodeType(t1, VariableDeclaration) ∧ NodeValue(t1, v) ∧ Use(v, SO) ∧ ¬Def(v, SO)

Specify a target of method invocation InstanceCall(m, GH) ∧ LocalCall(m, SO)

Remove undeclared variables or local method calls (Use(v, SO) ∧ ¬Def(v, SO) ∧ ¬Use(v, GH)) ∨ (LocalCall(m, SO) ∧ ¬LocalCall(m, GH) ∧ ¬InstanceCall(m, GH))

Exception Handling

Insert/delete a try-catch block (Insert(t1, t2, i) ∨ Delete(t1)) ∧ NodeType(t1, TryStatement)

Insert/delete a thrown exception in a method header
Changed(t1) ∧ NodeType(t1, Type) ∧ Parent(t2, t1) ∧ NodeType(t2, MethodDeclaration) ∧ NodeValue(t1, t) ∧

isExceptionType(t)

Update the exception type
Update(t1, t2) ∧ NodeType(t1, SimpleType) ∧ NodeType(t2, SimpleType) ∧ NodeValue(t1, v1) ∧

isExceptionType(v1) ∧ NodeValue(t2, v2) ∧ isExceptionType(v2)

Change statements in a catch block Changed(t1) ∧ Ancestor(t2, t1) ∧ NodeType(t2, CatchClause)

Change statements in a finally block Changed(t1) ∧ Ancestor(t2, t1) ∧ NodeType(t2, FinallyBlock)

Logic Customization

Change a method call Changed(t1) ∧ Ancestor(t2, t1) ∧ NodeType(t2, MethodInvocation)

Update a constant value Update(t1, t2) ∧ NodeType(t1, Literal) ∧ NodeType(t2, Literal)

Change a conditional expression
Changed(t1) ∧ Ancestor(t2, t1) ∧

(NodeType(t2, IfCondition) ∨ NodeType(t2, LoopCondition) ∨ NodeType(t2, SwitchCase))

Change the type of a variable Update(t1, t2) ∧ NodeType(t1, Type) ∧ NodeType(t2, Type)

Refactoring

Rename a variable/field/method Update(t1, t2) ∧ NodeType(t1, Name)

Replace hardcoded constant values with variables Delete(t1) ∧ NodeType(t1, Literal) ∧Insert(t1, t2, i) ∧ NodeType(t1, Name) ∧ Match(t1, t2)

Inline a field Delete(t1) ∧ NodeType(t1, Name) ∧Insert(t1, t2, i) ∧ NodeType(t1, Literal) ∧ Match(t1, t2)

Miscellaneous

Change access modifiers Changed(t1) ∧ NodeType(t1, Modifier) ∧ NodeValue(t1, v) ∧ v ∈ {private, public, protected, static}

Change a log/print statement Changed(t1) ∧ NodeType(t1, MethodInvocation) ∧ NodeValue(t1, m) ∧ isLogMethod(m)

Style reformatting (i.e., inserting/deleting curly braces) Changed(t1) ∧ NodeType(t1, Block) ∧ Parent(t2, t1) ∧ ¬Changed(t2) ∧ Child(t3, t1) ∧ ¬Changed(t3)

Change Java annotations Changed(t1) ∧ NodeType(t1, Annotation)

Change code comments Changed(t1) ∧ NodeType(t1, Comment)

GumTree Edit Operation Syntactic Predicate Semantic Predicate

Insert(t1, t2, i) inserts a new tree node t1 as the i-th

child of t2 in the AST of a GitHub snippet.

NodeType(t1, X) checks if the node type of t1 is X.
Exception(e, P ) checks if e is an exception caught in a catch

clause or thrown in a method header in program P .

NodeValue(t1, v) checks if the corresponding source code

of node t1 is v.

LocalCall(m, P ) checks if m is a local method call in program P .

Delete(t) removes the tree node t from the AST of a

SO example.

Match(t1, t2) checks if t1 and t2 are matched based on

surrounding nodes regardless of node types.

InstanceCall(m, P ) checks if m is an instance call in program P .

Parent(t1, t2) checks if t1 is the parent of t2 in the AST. Def(v, P ) checks if variable v is defined in program P .

Update(t1, t2) updates the tree node t1 in a SO

example with t2 in the GitHub counterpart.

Ancestor(t1, t2) checks if t1 is the ancestor of t2 in the AST. Use(v, P ) checks if variable v is used in program P .

Child(t1, t2) checks if t1 is the child of t2. IsExceptionType(X) checks if X contains “Exception”.

Move(t1, t2, i) moves an existing node t1 in the

AST of a SO example as the i-th child of t2 in

the GitHub counterpart.

Changed(t1) is a shorthand for Insert(t1, t2, i) ∨ Delete(t1)

∨ Update(t1, t2) ∨ Move(t1, t2), which checks any

edit operation on t1.

IsLogMethod(X) checks if X is one of the predefined log methods,

e.g., log, println, error, etc.

IsCleanMethod(X) checks if X is one of the predefined resource

clean-up methods, e.g., close, recycle, dispose, etc.
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cases or protects code from invalid input data such as null or an out-of-bound index. In-

sert a final modifier enforces that a variable is only initialized once and the assigned value

or reference is never changed, which is generally recommended for clear design and better

performance due to static inlining. Handle a new exception improves the reliability of a code

example by handling any missing exceptions, since exception handling is often omitted in

examples in SO [264]. Clean up unmanaged resources helps release unneeded resources such

as file streams and web sockets to avoid resource leaks [233].

Resolve Compilation Errors. SO examples are often incomplete with undefined variables

and method calls [55, 259]. Declare an undeclared variable inserts a statement to declare an

unknown variable. Specify a target of method invocation resolves an undefined method call

by specifying the receiver object of that call. In an example about getting CPU usage [4],

one comment complains the example does not compile due to an unknown method call,

getOperatingSystemMXBean. Another suggests to preface the method call with an instance,

ManagementFactory, which is also evidenced by its GitHub counterpart [14]. Sometimes,

statements that use undefined variables and method calls are simply deleted.

Exception Handling. This category represents changes of the exception handling logic in

catch/finally blocks and throws clauses. One common change is to customize the actions

in a catch block, e.g., printing a short error message instead of the entire stack trace. Some

developers handle exceptions locally rather than throwing them in method headers. For ex-

ample, while the SO example [8] throws a generic Exception in the addLibraryPath method,

its GitHub clone [12] enumerates all possible exceptions such as SecurityException and

IllegalArgumentException in a try-catch block. By contrast, propagating the exceptions

to upstream by adding throws in the method header is another way to handle the exceptions.

Logic Customization. Customizing the functionality of a code example to fit a target

project is a common and broad category. We categorize logic changes to four basic types.

Change a method call includes any edits in a method call, e.g., adding or removing a method

call, changing its arguments or receiver, etc. Update a constant value changes a constant value

such as the thread sleep time to another value. Change a conditional expression includes

any edits on the condition expression of an if statement, a loop, or a switch case.
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Figure 7.2: Code size (LOC) and vote scores on the number of AST edits in a SO example

Update a type name replaces a variable type or a method return type with another type.

For example, String and StringBuffer appear in multiple SO examples, and a faster type,

StringBuilder, is used in their GitHub clones instead. Such type replacement often involves

extra changes such as updating method calls to fit the replaced type or adding method calls

to convert one type to another. For example, instead of returning InetAddress in a SO

example [7], its GitHub clone [10] returns String and thus converts the IP address object

to its string format using a new Formatter API.

Refactoring. 31% of inspected GitHub counterparts use a method or variable name dif-

ferent from the SO example. Instead of slider in a SO example [5], timeSlider is used

in one GitHub counterpart [11] and volumnSlider is used in another counterpart [9]. Be-

cause SO examples often use hardcoded constant values for illustration purposes, GitHub

counterparts may use variables instead of hardcoded constants. However, sometimes, a

GitHub counterpart such as [13] does the opposite by inlining the values of two constant

fields, BUFFER SIZE and KB, since these fields do not appear along with the copied method,

downloadWithHttpClient [6].

Miscellaneous. Adaptation types in this category do not have a significant impact on the

reliability and functionality of a SO example. However, several interesting cases are still

worth noting. In 91 inspected examples, GitHub counterparts include comments to explain

the reused code. Sometimes, annotations such as @NotNull or @DroidSafe appear in GitHub

counterparts to document the constraints of code.
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7.3.2 Automated Adaptation Categorization

Based on the manual inspection, we build a rule-based classification technique that automat-

ically categorizes AST edit operations generated by GumTree to different adaptation types.

GumTree supports four edit operations—insert, delete, update, and move, described in

Column GumTree Edit Operation in Table 7.1. Given a set of AST edits, our technique

leverages both syntactic and semantic rules to categorize the edits to 24 adaptation types.

Column Rule in Table 7.1 describes the implementation logic of categorizing each adaptation

type.

Syntactic-based Rules. 16 adaptation types are detected based on syntactic information,

e.g., edit operation types, AST node types and values, etc. Column Syntactic Predicate

defines such syntactic information, which is obtained using the built-in functions provided

by GumTree. For example, the rule insert a final modifier checks for an edit operation that

inserts a Modifier node whose value is final in a GitHub clone.

Semantic-based Rules. 8 adaptation types require leveraging semantic information to be

detected (Column Semantic Predicate). For example, the rule declare an undeclared variable

checks for an edit operation that inserts a VariableDeclaration node in the GitHub coun-

terpart and the variable name is used but not defined in the SO example. Our technique

traverses ASTs to gather such semantic information. For example, our AST visitor keeps

track of all declared variables when visiting a VariableDeclaration AST node, and all used

variables when visiting a Name node.

7.3.3 Accuracy of Adaptation Categorization

We randomly sampled another 100 SO examples and their GitHub clones to evaluate our

automated categorization technique. To reduce bias, the second author who was not involved

in the previous manual inspection labeled the adaptation types in this validation set. The

ground truth contains 449 manually labeled adaptation types in 100 examples. Overall,

our technique infers 440 adaptation types with 98% precision and 96% recall. In 80% of

SO examples, our technique infers all adaptation types correctly. In another 20% of SO
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Figure 7.3: Frequencies of categorized adaptation types in two datasets

examples, it infers some but not all expected adaptation types.

Our technique infers incorrect or missing adaptation types for two main reasons. First,

our technique only considers 24 common adaptation types in Table 7.1 but does not handle

infrequent ones such as refactoring using lambda expressions and rewriting ++i to i++.

Second, GumTree may generate sub-optimal edit scripts with unnecessary edit operations in

about 5% of file pairs, according to [72]. In such cases, our technique may mistakenly report

incorrect adaptation types.

7.4 An Empirical Study of Common Adaptations of Stack Over-

flow Code Examples

7.4.1 How many edits are potentially required to adapt a SO example?

We apply the adaptation categorization technique to quantify the extent of adaptions and

variations in the two datasets. We measure AST edits between a SO example and its GitHub

counterpart. If a SO code example has multiple GitHub counterparts, we use the average

number. Overall, 13,595 SO examples (96%) in the variation dataset include a median of 39

AST edits (mean 47). 556 SO examples (88%) in the adaptation dataset include a median
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of 23 AST edits (mean 33). Figure 7.2a compares the distribution of AST edits in these

two datasets. In both datasets, most SO examples have variations from their counterparts,

indicating that integrating them to production code may require some type of adaptations.

Figure 7.2b shows the median number of AST edits in SO examples with different lines

of code. We perform a non-parametric local regression [210] on the example size and the

number of AST edits. As shown by the two lines in Figure 7.2b, there is a strong positive

correlation between the number of AST edits and the SO example size in both datasets—long

SO examples have more adaptations than short examples.

Stack Overflow users can vote a post to indicate the applicability and usefulness of the

post. Therefore, votes are often considered as the main quality metric of SO examples [166].

Figure 7.2c shows the median number of AST edits in SO examples with different vote scores.

Although the adaptation dataset has significantly higher votes than the variation dataset

(Figure 7.1c), there is no strong positive or negative correlation between the AST edit and

the vote score in both sets. This implies that highly voted SO examples do not necessarily

require fewer adaptations than those with low vote scores.

7.4.2 What are common adaptation and variation types?

Figure 7.3 compares the frequencies of the 24 categorized adaptation types (Column Adap-

tation Type in Table 7.1) for the adaptation and variation datasets. If a SO code example

has multiple GitHub counterparts, we only consider the distinct types among all GitHub

counterparts to avoid the inflation caused by repetitive variations among different counter-

parts. The frequency distribution is consistent in most adaptation types between the two

datasets, indicating that variation patterns resemble adaptation patterns. Participants in the

user study (Section 7.6) also appreciate being able to see variations in similar GitHub code,

since “it highlights the best practices followed by the community and prioritizes the changes

that I should make first,” as P5 explained.

In both datasets, the most frequent adaptation type is change a method call in the

logic customization category. Other logic customization types also occur frequently. This
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Figure 7.4: In the lifted template, common unchanged code is retained, while adapted regions

are abstracted with hot spots.

is because SO examples are often designed for illustration purposes with contrived usage

scenarios and input data, and thus require further logic customization. Rename is the

second most common adaptation type. It is frequently performed to make variable and

method names more readable for the specific context of a GitHub counterpart. 35% and

14% of SO examples in the variation dataset and the adaptation dataset respectively include

undefined variables or local method calls, leading to compilation errors. The majority of

these compilation errors (60% and 61% respectively) could be resolved by simply removing

the statements using these undefined variables or method calls. 34% and 22% of SO examples

in the two datasets respectively include new conditionals (e.g., an if check) to handle corner

cases or reject invalid input data.

To understand whether the same type of adaptations appears repetitively on the same SO

example, we count the number of adaptation types shared by different GitHub counterparts.

Multiple clones of the same SO example share at least one same adaptation type in the 70%

of the adaptation dataset and 74% of the variation dataset. In other words, the same type

of adaptations is recurring among different GitHub counterparts.
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7.5 Tool Support and Implementation

Based on insights of the adaptation analysis, we build a Chrome extension called Exam-

pleStack that visualizes similar GitHub code fragments alongside a SO code example and

allows a user to explore variations of the SO example in an adaptation-aware code template.

7.5.1 ExampleStack Tool Features

Suppose Alice is new to Android and she wants to read some json data from the asset

folder of her Android application. Alice finds a SO code example [18] that reads geometric

data from a specific file, locations.json (¬ in Figure 7.4). ExampleStack helps Alice by

detecting other similar snippets in real-world Android projects and by visualizing the hot

spots where adaptations and variations occur.

Browse GitHub counterparts with differences. Given the SO example, Exam-

pleStack displays five similar GitHub snippets and highlights their variations to the SO

example (® in Figure 7.4). It also surfaces the GitHub link and reputation metrics of the

GitHub repository, including the number of stars, contributors, and watches (¯ in Fig-

ure 7.4). By default, it ranks GitHub counterparts by the number of stars.

View hot spots with code options. ExampleStack lifts a code template to illuminate

unchanged code parts, while abstracting modified code as hot spots to be filled in ( in

Figure 7.4). The lifted template provides a bird’s-eye view and serves as a navigation model

to explore a variety of code options used to customize the code example. In Figure 7.5,

Alice can click on each hot spot and view the code options along with their frequencies in

a drop-down menu. Code options are highlighted in six distinct colors according to their

underlying adaptation intent (² in Figure 7.4). For example, the second drop-down menu in

Figure 7.5 indicates that two GitHub snippets replace locations.json to languages.json

to read the language asset resources for supporting multiple languages. This variation is

represented as update a constant value in the logic customization category.

Fill in hot spots with auto-selection. Instead of hardcoding the asset file name,

Alice wants to make her program more general—being able to read asset files with any

165



Drop-down menu 1

Drop-down menu 2
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Figure 7.5: Alice can click on a hot spot and view potential code options colored based on

their underlying adaptation type.

given file name. Therefore, Alice selects the code option, jsonFileName, in the second

drop-down menu in Figure 7.5, which generalizes the hardcoded file name to a variable.

ExampleStack automatically selects another code option, String jsonFileName, in the

first drop-down menu in Figure 7.5, since this code option declares the jsonFileName variable

as the method parameter. This auto-selection feature is enabled by def-use analysis, which

correlates code options based on the definitions and uses of variables (Section 7.5.2). By

automatically relating code options in a template, Alice does not have to manually click

through multiple drop-down menus to figure out how to avoid compilation errors. Figure 7.6

shows the customized template based on the selected jsonFileName option. The list of

GitHub counterparts and the frequencies of other code options are also updated accordingly

based on user selection. Alice can undo the previous selection (° in Figure 7.4) or copy the

customized template to her clipboard (± in Figure 7.4).

7.5.2 Template Construction

Diff generating and pruning. To lift an adaptation-aware code template of a SO code

example, ExampleStack first computes the AST differences between the SO example and

each GitHub clone using GumTree. ExampleStack prunes the edit operations by filtering

out inner operations that modify the children of other modified nodes. For example, if an

insert operation inserts an AST node whose parent is also inserted by another insert, the
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Figure 7.6: ExampleStack automatically updates the code template based on user selection.

first inner insert will be removed, since its edit is entailed by the second outer insert. Given

the resulting tree edits, ExampleStack keeps track of the change regions in the SO example

and how each region is changed.

Diff grouping. ExampleStack groups change regions to decide where to place hot

spots in a SO example and what code options to display in a hot spot. If two change regions

are the same, they are grouped together. If two change regions overlap, ExampleStack

merges the overlapping change locations into a bigger region enclosing both and groups

them together. For example, consider a diff that changes a= b to a= b+c , and another diff

that completely changes a=b to o.foo() . Simply abstracting the changed code in these

two diffs without any alignment will overlay two hot spots in the template, a= b and

the smaller diff is shadowed by the bigger diff in visualization. ExampleStack avoids this

conflict by re-calibrating the first change region from a= b to a=b .

Option generating and highlighting. For each group of change regions, Exam-

pleStack replaces the corresponding location in the SO example with a hot spot and attaches

a drop-down menu. ExampleStack displays both the original content in the SO example

and contents of the matched GitHub snippet regions as options in each drop-down menu.

ExampleStack then uses the adaptation categorization technique to detect the underlying

167



Table 7.2: Code reuse tasks and user study results

ID Desired Function & SO Example LOC Clone#
Control Experiment

Assignment Adaptation Time(s) Assignment Adaptation Time(s)

Task I
Calculate the geographic distance

between two GPS coordinates [20]
12 2

P5-A refactor(5), logic(1) 458 P2-A harden(1), logic(1), misc(2) 870

P7-A refactor(1), logic(2), misc(1) 900 P3-B refactor(6), logic(4), misc(3) 900

P12-B refactor(2), harden(1) 900 P10-B refactor(5), logic(2), misc(1) 366

P16-B refactor(7) 727 P15-A refactor(10), logic(14), misc(3) 842

Task II
get the relative path between

two files [16]
74 2

P3-A refactor(5), logic(1), exception(2), misc(3) 900 P1-B refactor(3), harden(1), logic(2) 640

P8-A harden(1) 900 P6-A harden(4), logic(3) 900

P11-B none 621 P9-A harden(4), logic(2) 900

P15-B
refactor(13), harden(1), logic(5),

exception(1), misc(1)

863 P13-B
refactor(3), logic(2), exception(1),

misc(1)

900

Task III
encode a byte array to a

hexadecimal string [15]
12 17

P1-A refactor(5), harden(1) 652 P4-A refactor(5), harden(1), misc(1) 667

P6-B refactor(1), misc(1) 900 P8-B refactor(2), harden(1), misc(2) 548

P9-B harden(1), logic(1) 635 P12-A refactor(3), harden(2), misc(1) 748

P13-A refactor(3), misc(1) 900 P14-B refactor(3), harden(1), misc(1) 700

Task IV
add animation to an Android

view [17]
29 4

P2-B refactor(3), logic(1) 441 P5-B refactor(1), logic(3) 478

P4-B refactor(1), compile(1), misc(1) 900 P7-B refactor(2), compile(3), logic(3) 887

P10-A refactor(3), logic(5) 900 P11-A refactor(1), logic(3) 617

P14-A refactor(2), logic(4) 862 P16-A refactor(6), logic(4), misc(1) 773

adaptation types of code options. We use six distinct background colors to illuminate the

categories in Table 7.1, which makes it easier for developers to recognize different intent. The

color scheme is generated using ColorBrewer [21] to ensure the primary visual differences

between different categories in the template.

ExampleStack successfully lifts code templates in all 14,124 SO examples. On average,

a lifted template has 81 lines of code (median 41) with 13 hot spots (median 12) to fill in.

On average, 4 code options (median 2) is displayed in the drop-down menu of each hot spot.

7.6 User Study

We conducted a within-subjects user study with sixteen Java programmers to evaluate the

usefulness of ExampleStack. We emailed students in a graduate-level Software Engineering

class and research labs in the CS department at UCLA. We did a background survey and

excluded volunteers with no Java experience, since our study tasks required users to read code

examples in Java. Fourteen participants were graduate students and two were undergraduate

students. Eleven participants had two to five years of Java experience, while the other five

were novice programmers with one-year Java experience, showing a good mix of different
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levels of Java programming experience.

In each study session, we first gave a fifteen-minute tutorial of our tool. Participants then

did two code reuse tasks with and without ExampleStack. When not using our tool (i.e.,

the control condition), participants were allowed to search online for other code examples,

which is commonly done in real-world programming workflow [48]. To mitigate learning

effects, the order of assigned conditions and tasks were counterbalanced across participants

through random assignment. In each task, we asked participants to mark which parts of a

SO code example they would like to change and explain how they would change. We did not

require participants to fully integrate a code example to a target program or make it compile,

since our goal was to investigate whether ExampleStack could inspire developers with new

adaptations that they may otherwise ignore, rather than automated code integration. Each

task was stopped after fifteen minutes. At the end, we did a post survey to solicit feedback.

Table 7.2 describes the four code reuse tasks and also the user study results. Column

Assignment in each condition shows the participant ID and the task order. “P5-A” means

the task was done by the fifth participant as her first task. Column Adaptation shows the

number of different types of adaptations each participant made. Overall, participants using

ExampleStack made three times more code hardening adaptations (15 vs. 5) and twice

more logic customization adaptations (43 vs. 20), considering more edge cases and different

usage scenarios. For instance, in Task III, all users in the experimental group added a null

check for the input byte array after seeing other GitHub examples, while only one user in

the control group did so. P14 wrote, “I would have completely forgotten about the null check

without seeing it in a couple of examples.” On average, participants using ExampleStack

made more adaptations (8.0 vs. 5.5) in more diverse categories (2.8 vs. 2.2). Wilcoxon

signed-rank tests indicate that the mean differences in adaptation numbers and categories

are both statistically significant (p=0.042 and p=0.009). We do not argue that making more

adaptations are always better. Instead, we want to emphasize that, by seeing commonalities

and variations in similar GitHub code, participants focus more on code safety and logic

customization, instead of making shallow adaptations such as variable renaming only. The

average task completion time is 725 seconds (SD=186) and 770 seconds (SD=185) with and
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without ExampleStack. We do not claim ExampleStack saves code reuse time, since it is

designed as an informative tool when developers browse online code examples, rather than

providing direct code integration support in an IDE. Figure 7.7 shows the code templates

generated by ExampleStack, not including the one in Task II due to its length (79 lines).

How do you like or dislike viewing similar GitHub code alongside a SO

example? In the post survey, all participants found it very useful to see similar GitHub

code for three main reasons. First, viewing the commonality among similar code examples

helped users quickly understand the essence of a code example. P6 described this as “the fast

path to reach consensus on a particular operation.” Second, the GitHub variants reminded

users of some points they may otherwise miss. Third, participants felt more confident of a

SO example after seeing how similar code was used in GitHub repositories. P9 stated that,

“[it is] reassuring to know that the same code is used in production systems and to know the

common pitfalls.”

How do you like or dislike interacting with a code template? Participants

liked the code template, since it showed the essence of a code example and made it easier to

see subtle changes, especially in lengthy code examples. Participants also found displaying

the frequency count of different adaptations very useful. P5 explained, “it highlights the

best practices followed by the community and also prioritizes the changes that I should make

first.” However, we also observed that, when there were only a few GitHub counterparts,

some participants inspected individual GitHub counterparts directly rather than interacting

with the code template.

How do you like or dislike color-coding different adaptation types? Though

the majority of participants confirmed the usefulness of this feature, six participants felt

confused or distracted by the color scheme, since it was difficult to remember these colors

during navigation. Three of them considered some adaptations (e.g., renaming) trivial and

suggested to allow users to hide adaptations of no interest to avoid distraction.

When would you use ExampleStack? Six participants would like to use Exam-

pleStack when learning APIs, since it provided multiple GitHub code fragments that use
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the same API in different contexts with critical safety checks and exception handling. Five

participants mentioned that ExampleStack would be most useful for a lengthy example.

P4 wrote, “the tool is very useful when the code is longer and hard to spot what to change

at a glance.” Two participants wanted to use ExampleStack to identify missing points and

assess different solutions, when writing a large-scale robust project.

In addition, P15 and P16 suggested to display similar code based on semantic similar-

ity rather than just syntactic similarity, in order to find alternative implementations and

potential optimization opportunities. P13 suggested to add indicators about whether a SO

example is compilable or not.

7.7 Threats to Validity

In terms of internal validity, our variation dataset may include coincidental clones, since

GitHub developers may write code with similar functionality as a SO example. To mit-

igate this issue, we compare their timestamps and remove those GitHub clones that are

created before the corresponding SO examples. We further create an adaptation set with

explicitly attributed SO examples and compare the analysis results of both datasets for cross-

validation. Figure 7.3 shows that the distribution of common adaptation patterns is similar

between these two datasets. It would be valuable and useful to guide code adaptation by

identifying the commonalities and variations between similar code, even for clones coming

from independent but similar implementations.

In terms of external validity, when identifying common adaptation types, we follow the

standard qualitative analysis procedure [45] to continuously inspect more samples till the

insights are converging. However, we may still miss some adaptation types due to the small

sample size. To mitigate this issue, the second author who was not involved in the manual

inspection further manually labeled 100 more samples to validate the adaptation taxonomy

(Section 7.3.3). In addition, user study participants may not be representative of real Stack

Overflow users. To mitigate this issue, we recruit both novice and experienced developers

who use Stack Overflow on a regular basis. To generalize our findings to industrial settings,

171



(a) Compute distance between two coordinates [20]

(b) Encode byte array to a hex string [15]

(c) Add animation to an Android view [17]

Figure 7.7: ExampleStack code template examples

further studies with professional developers are needed.

In terms of construct validity, in the user study, we only measure whether ExampleStack

inspires participants to identify and describe adaptation opportunities. We do not ask par-
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ticipants to fully integrate a SO example to a target program nor make it compile. Therefore,

our finding does not imply time reduction in code integration.

7.8 Summary

This chapter provides a comprehensive analysis of common adaptation and variation pat-

terns of online code examples by both overapproximating and underapproximating reused

code from Stack Overflow to GitHub. The key takeaway is that the same type of adap-

tations and variations appears repetitively among different GitHub clones of the same SO

example, and variation patterns resemble adaptation patterns. This implies that different

GitHub developers may apply similar adaptations to the same example over and over again

independently. This further motivates the design of ExampleStack, a Chrome extension

that guides developers in adapting online code examples by unveiling the commonalities and

variations of similar past adaptations. A user study with sixteen developers demonstrates

that by viewing the commonalities and variations in similar GitHub counterparts, develop-

ers identify more adaptation opportunities related to code safety and logic customization,

resulting in more complete and robust code.
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CHAPTER 8

Conclusion and Future Work

As software becomes ubiquitous and complex, developers often reuse existing software com-

ponents (e.g., existing code fragments, library APIs) to build their own applications. The

advent of code-sharing websites such as GitHub has significantly enriched software reuse op-

portunities by making a large number of open-source projects available online. As a result,

many code fragments with similar implementation or API usage are shared within individual

codebases and across different projects. There is a great opportunity to leverage these similar

programs to guide software development and maintenance tasks, helping developers make

systematic decisions based on what has and has not been done in other similar contexts.

This dissertation explores several opportunities to facilitate common tasks in devel-

oper workflow by identifying and analyzing similar code in local codebases and open-source

projects. In Critics, we demonstrate that, by summarizing similar program edits and iden-

tifying inconsistencies among these edits, developers finish code review tasks with less time

and find more edit mistakes. Using Grafter, developers can further investigate runtime

behavior similarities between similar code and detect suspicious behavior discrepancies. Ex-

ampleCheck unveils common ways of using an API by mining representative API usage

patterns from 380K GitHub projects. A large-scale study on Stack Overflow demonstrates

that ExampleCheck can effectively identify code examples that deviate from common prac-

tices in open-source communities and prevent bug propagation during opportunistic code

reuse. Examplore visualizes commonalities and variations among a large number of API

usage examples in a synthetic code skeleton, providing a population-level view of API usage

along with their frequencies. ExampleCheck enables developers to identify code adaptation

opportunities and write more robust and complete code by displaying and contrasting simi-
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lar code in GitHub. All together, we demonstrate that presenting multiple similar programs

and illuminating their commonalities and variations can help developers avoid unintentional

inconsistencies, identify better implementation alternatives, and get a deeper understanding

of the program under investigation.

In the following two sections, we will summarize the insights we have learnt and discuss

future directions.

8.1 Insights of Displaying and Contrasting Similar Programs

Insight 1. In order to effectively leverage similar programs, it is essential to first

define a proper program abstraction to capture desired program similarity. In

this thesis, we demonstrate applications that leverage two kinds of similar programs—code

fragments with similar syntactic structures and code fragments with similar API usage. The

general idea of displaying and contrasting similar code for systematic software development

can be further applied to other kinds of similar programs. For example, research on auto-

mated program repair may concern more about common edit patterns, e.g., applying a null

check on a variable before using it. Therefore, a similarity metric on edit operations may

be more appropriate to identify common fix patterns than syntactic similarities in program

contexts. Other research may also want to use input-output values or execution traces to

model programs that have similar runtime behaviors. For each kind of similarity definition,

it is essential to design a proper program abstraction to capture desired similarity while elim-

inating superficial variations. For example, when searching for syntactically similar code,

abstract syntax tree (AST) can faithfully represent code elements and structures. However,

for learning similar API usage, structured API call sequence is more appropriate than AST

by unifying similar API usage in different syntactic expressions, e.g., calling multiple API

methods in a single statement by chaining them together vs. calling multiple API methods

in separate statements.

Insight 2. Allowing developers to interactively specify desired code and provide

partial feedback can effectively guide automated program analysis and improve

175



the accuracy of analysis results. In the absence of formal specifications or test oracles,

it is hard to guarantee that variations in similar code represent alternative implementations

worth exploring or unintentional inconsistencies that lead to bugs. In fact, this is a general

problem in code recommendation and bug detection tools—developers are often overwhelmed

with a large number of false positives, which hinders the adoption of these tools [112]. Prior

work mostly focuses on reducing false positives by designing effective ranking and filtering

heuristics. However, in this thesis, we demonstrate the effectiveness of incorporating user

feedback to refine analysis results. We explore two different kinds of interaction designs.

First, in Critics, we allow developers to construct a search template from one concrete

example and incrementally customize the template based on previous search results. In a

follow-on work of Critics, we design a novel user interaction paradigm to further reduce the

manual effort of editing a template, where developers only need to label some positive and

negative examples and the template will be automatically refined via active learning [215].

Second, in Examplore and ExampleStack, we automatically lift a template from multiple

code examples but allow developers to interact with the template to drill down to concrete

details. The former interaction is more suitable for specifying and searching similar code

with complex patterns, while the latter is more appropriate for visualizing and exploring a

large volume of similar code that is already present.

Insight 3. It is important to combine statistical methods with semantic reasoning

in big code analysis. When learning coding idioms from massive code corpora, we need

to reason about program semantics rather than simply treating source code as sequences of

tokens. For example, to analyze common API usage in thousands of software projects writ-

ten by different developers, it is important to eliminate project-specific details and cluster

semantically equivalent expressions with subtle syntactic variations. The experiment of Ex-

ampleCheck shows that, by eliminating extraneous program statements that are unrelated

to the focal API in a large code corpus, program slicing improves pattern mining precision

and recall by 15% and 10% respectively, and improves mining performance by 4.5X.

Many mining techniques only apply statistical methods such as the n-gram model to infer

patterns of surface structures such as tokens and syntax [24,95,98,106,186,189]. Therefore,
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these techniques can only learn statistical correlations between code elements rather than

semantic relationships between them. Some pattern inference techniques perform static

analysis such as program slicing and symbolic execution to reason about program seman-

tics [50,248]. However, static analysis is computationally expensive and thus does not scale

to a large collection of open-source projects. In this thesis, we make the first attempt to

apply sophisticated program analysis on massive code corpora by harnessing the power of

distributed computation. Specifically, we leverage AST traversal primitives in a distributed

software mining infrastructure [66] to implement the program slicing algorithm. The process

of searching for similar programs and performing program slicing takes no more than 15

minutes (10 minutes on average) over 380K GitHub projects in a cluster of eleven machines.

Insight 4. Helping developers understand the gist of similar programs is as im-

portant as identifying and analyzing similar programs. Writing robust code based on

reference implementation depends on the capability to understand similar code in different

program scenarios. Pairwise comparison is a ubiquitous way to contrast programs. However,

through user studies, we find that pairwise comparison is cognitively overloading when there

are more than three similar programs. Developers tend to only inspect the first few examples

and skip the rest. Prior studies on code search also make similar observations—developers

often rapidly examine a handful of search results and return to their own code due to lim-

ited time and attention [48, 218]. Therefore, it is necessary to provide concise, interactive

visualizations to represent commonalities and variations among similar code at scale. In Ex-

ampleCheck, we summarize common API usage as pattern rules. Though such rule-based

representation can concisely express the gist of common API usage, it cannot easily convey

the variations among different patterns. Therefore, in Examplore, we design an alternative

visualization by clustering distinct API usage features extracted from concrete examples and

synthesizing a code skeleton with all of these features and their frequencies. To generalize the

visualization from API usage to program constructs in arbitrary code, in ExampleStack,

we design a visualization that lifts a code template from similar code fragments by retaining

common, unchanged code while abstracting away variations as “holes” in the template.
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8.2 Future Directions

Learning Infrequent but Semantically Correct Patterns The central thesis of frequency-

based mining approaches is that a pattern that occurs more frequently is more likely to be

representative and correct. However, this may not always be the case. For example, the

majority way of using a cryptographic API in open-source communities may be insecure,

e.g., not using a strong encryption mode such as RSA [165]. In the manual analysis of

400 sampled API usage violations detected by ExampleCheck, we find that about 9% of

these violations are false positives due to correct but infrequent API usage. In Examplore,

we present one solution by visualizing all distinct API usage features with their statistical

distributions in the population of relevant code examples, regardless of their frequencies.

Instead of assuming all code is equally likely to be correct, Le Goues and Weimer propose to

use code quality metrics (e.g., code churn, cyclomatic complexity) to assign more weights to

patterns learned from code with high quality [138]. Given the abundance of online learning

resources, we can also triangulate inferred patterns with multiple information sources, e.g.,

correlating patterns inferred from massive code corpora with discussions in Stack Overflow.

For security APIs, we may want to assign more weights to API usage confirmed by official

documentation and security-related technical blogs, though they may occur less frequently

in open-source projects.

Bridging Probabilistic Reasoning with Semantic Reasoning Given its capability to

generalize from examples and handle noises, statistical methods such as machine learning

have great potential to infer sophisticated program patterns that cannot be easily identified

by clustering or frequency-based mining approaches. However, unlike traditional formal,

logic-based program analysis, which often represents programs in a symbolic form, machine

learning research represents programs with continuous representations. As a result, proba-

bilistic models often lack the guarantee that formal methods often provide, e.g., producing

invalid code that does not satisfy semantic constraints in software programs. Existing tech-

niques simply apply semantic constraints on the outputs of a model to filter out invalid

outputs [147, 189]. By contrast, enabling statistical methods to reason with symbolic con-
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straints may learn more correct program patterns and produce better results. Since symbolic

reasoning methods are not differentiable, we cannot direct add symbolic reasoning to a ma-

chine learning pipeline. One possible solution is to translate a semantic constraint as a

differentiable loss function and minimize the loss function to satisfy the given constraint

during model training. Xu et al. propose semantic loss functions to enforce symbolic do-

main knowledge in deep learning [257]. However, their approach is restricted to simple logic

constraints constituted of propositional variables and logical operators (∧, ∨, etc). There-

fore, it is is intractable for complicated constraints expressed in formal methods. Exploring

how to extend semantic loss functions to effectively express program constraints remains an

interesting future direction.

Scaling Programming to the Globe Twenty years ago, developers often write code by

themselves or search local codebases for similar code to reuse. Nowadays, they have more

opportunities to observe and learn from similar code written by other developers, given the

abundance of tutorials, discussions, and code snippets shared on the Internet. There are

also many opportunities to design effective tool support that aggregates and disseminates

programming knowledge at a global scale. For example, the cost of developing test cases

is high, which makes test reuse among similar programs appealing. The availability of big

code will significantly increase the opportunities of identifying a diverse set of test cases

that examine similar functionality. In Grafter, we have explored how to reuse test cases

between similar code in local codebases via code transplantation. However, new challenges

may arise when reusing test cases across different projects. For instance, similar programs

from different projects may have more syntactic variations than similar code from the same

codebase, e.g., using different libraries with similar functionality. Though a number of tech-

niques have been proposed to detect semantically similar programs in code search and clone

detection [110, 173, 220, 222, 265], it is unclear whether these techniques scale to massive

code corpora. Furthermore, we need to design new code transformation and data propa-

gation rules to handle a diverse set of variations that have not been seen in within-project

clones, e.g., transferring data between objects with similar data structures but from different

libraries.
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Another intriguing application is to guide programs synthesis by harnessing the power

of big code. Existing program synthesis techniques focus on synthesizing small programs in

a specific domain by designing a domain-specific language (DSL) and synthesize programs

from the scratch using the DSL [94,108,162,243,258,262]. However, online Q&A forums such

as Stack Overflow host a large number of small code snippets, which can serve as the basis

for composing complete programs. Therefore, there is a chance that we can automatically

locate related snippets that implement individual operations, glue them together, and then

let developers make the final tweaks to achieve the desired functionality. Several challenges

must be addressed to achieve this goal. First, online code snippets are often designed for

illustration purposes only and thus may not have concrete details such as variable declara-

tions and exception handling logic, which should be filled in automatically. Second, many

of these snippets are not designed to work together. Therefore, we need to design a set of

transformation rules to glue multiple snippets together and reconcile potential inconsisten-

cies between them. However, it is hard to design such transformation rules without a deep

understanding about how real developers perform similar tasks in practice. For example,

do developers often concatenate two snippets one after another or do they often interleave

them together? Third, given a partial specification (e.g., keyword descriptions, input/out-

put types, test cases) from a developer, how do we efficiently locate the underlying atomic

operations and corresponding code snippets?

In summary, programming is not just a logical activity that designs algorithms and data

structures and encodes them in a formal notation. It also involves cognitive and social

processes where developers read and learn from code written by others. As the Internet

accumulates an enormous volume of source code and the computing power grows, more and

more resources become available for harnessing the power of big code. Therefore, we envi-

sion a data-driven programming paradigm that enables developers to write robust code by

demonstrating how other developers write similar code in open-source communities. This

thesis demonstrates that, by identifying and contrasting similar code in different contexts,

developers can avoid potential programming mistakes and identify better, alternative imple-

mentations that may otherwise be overlooked. We believe such a data-driven paradigm will
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play an important role in modern software development and can be further applied to many

other software development tasks such as program repair and code completion.
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[165] S. Nadi, S. Krüger, M. Mezini, and E. Bodden. Jumping through hoops: why do java
developers struggle with cryptography apis? In Proceedings of the 38th International
Conference on Software Engineering, pages 935–946. ACM, 2016.

[166] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code example?:
A study of programming q&a in stackoverflow. In Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pages 25–34. IEEE, 2012.

[167] C. Ncube, P. Oberndorf, and A. W. Kark. Opportunistic software systems develop-
ment: making systems from what’s available. IEEE Software, 25(6):38–41, 2008.

[168] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining preconditions of apis
in large-scale code corpus. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 166–177. ACM, 2014.

[169] H. A. Nguyen, T. T. Nguyen, G. W. Jr., A. T. Nguyen, M. Kim, and T. Nguyen. A
graph-based approach to api usage adaptation. In OOPSLA ’10: Proceedings of the
2010 ACM SIGPLAN International Conference on Systems, Programming, Languages
and Applications, page 10, New York, NY, USA, 2010. ACM.

[170] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Graph-
based mining of multiple object usage patterns. In ESEC/FSE ’09: Proceedings of the
the 7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages 383–392, New
York, NY, USA, 2009. ACM.

[171] A. Orso and B. Kennedy. Selective capture and replay of program executions. In ACM
SIGSOFT Software Engineering Notes, volume 30, pages 1–7. ACM, 2005.

194



[172] J. Park, M. Kim, B. Ray, and D.-H. Bae. An empirical study of supplementary bug
fixes. In MSR ’12: The 9th IEEE Working Conference on Mining Software Reposito-
ries, pages 40–49, 2012.

[173] N. Partush and E. Yahav. Abstract semantic differencing via speculative correlation.
In ACM SIGPLAN Notices, volume 49, pages 811–828. ACM, 2014.

[174] A. Pavel, F. Berthouzoz, B. Hartmann, and M. Agrawala. Browsing and analyzing the
command-level structure of large collections of image manipulation tutorials. Citeseer,
Tech. Rep., 2013.

[175] M. Pawlik and N. Augsten. RTED: a robust algorithm for the tree edit distance.
Proceedings of the VLDB Endowment, 5(4):334–345, 2011.

[176] J. Petke, M. Harman, W. B. Langdon, and W. Weimer. Using genetic improvement
and code transplants to specialise a c++ program to a problem class. In European
Conference on Genetic Programming, pages 137–149. Springer, 2014.

[177] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Detection of recurring
software vulnerabilities. In Proceedings of the IEEE/ACM International Conference
on Automated software engineering, ASE ’10, pages 447–456, New York, NY, USA,
2010. ACM.

[178] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack overflow in the ide. In
Proceedings of the 2013 International Conference on Software Engineering, pages 1295–
1298. IEEE Press, 2013.

[179] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza. Mining stackoverflow
to turn the ide into a self-confident programming prompter. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 102–111. ACM, 2014.

[180] M. Pradel and T. R. Gross. Automatic generation of object usage specifications from
large method traces. In Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering, pages 371–382. IEEE Computer Society, 2009.

[181] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking api proto-
col conformance with mined multi-object specifications. In Proceedings of the 34th
International Conference on Software Engineering, pages 925–935. IEEE Press, 2012.

[182] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-based reconstruction
of complex refactorings. In 2010 IEEE International Conference on Software Mainte-
nance, pages 1 –10, 2010.

[183] M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: synthesizing what i mean: code
search and idiomatic snippet synthesis. In Proceedings of the 38th International Con-
ference on Software Engineering, pages 357–367. ACM, 2016.

[184] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference
using predicate mining. In ACM SIGPLAN Notices, volume 42, pages 123–134. ACM,
2007.

195



[185] V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependence for slicing
concurrent java programs. In International Conference on Compiler Construction,
pages 39–56. Springer, 2004.

[186] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu. On the”
naturalness” of buggy code. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 428–439. IEEE, 2016.

[187] B. Ray and M. Kim. A case study of cross-system porting in forked projects. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 53. ACM, 2012.

[188] B. Ray, M. Kim, S. Person, and N. Rungta. Detecting and characterizing semantic
inconsistencies in ported code. In Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, pages 367–377. IEEE Press, 2013.

[189] V. Raychev, M. Vechev, and A. Krause. Predicting program properties from big code.
In ACM SIGPLAN Notices, volume 50, pages 111–124. ACM, 2015.

[190] E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23–49, 1999.

[191] S. P. Reiss. Semantics-based code search. In Proceedings of the 31st International
Conference on Software Engineering, pages 243–253. IEEE Computer Society, 2009.

[192] P. C. Rigby and C. Bird. Convergent contemporary software peer review practices.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 202–212. ACM, 2013.

[193] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer review
practices: a case study of the apache server. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 541–550, New York, NY, USA,
2008. ACM.

[194] P. C. Rigby and M. P. Robillard. Discovering essential code elements in informal
documentation. In Proceedings of the 2013 International Conference on Software En-
gineering, pages 832–841. IEEE Press, 2013.

[195] M. P. Robillard. What makes apis hard to learn? answers from developers. IEEE
software, 26(6), 2009.

[196] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki,
and B. Hartmann. Learning syntactic program transformations from examples. In
Proceedings of the 39th International Conference on Software Engineering, pages 404–
415. IEEE Press, 2017.

[197] M. B. Rosson and J. M. Carroll. The reuse of uses in smalltalk programming. ACM
Transactions on Computer-Human Interaction (TOCHI), 3(3):219–253, 1996.

196



[198] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Queens
School of Computing TR, 541(115):64–68, 2007.

[199] C. K. Roy and J. R. Cordy. An empirical study of function clones in open source
software. In Reverse Engineering, 2008. WCRE’08. 15th Working Conference on,
pages 81–90. IEEE, 2008.

[200] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pages 172–181. IEEE,
2008.

[201] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming, 74(7):470–495, 2009.

[202] C. Sadowski, K. T. Stolee, and S. Elbaum. How developers search for code: a case
study. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 191–201. ACM, 2015.

[203] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for java. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software
engineering, pages 114–123. ACM, 2005.

[204] N. Sahavechaphan and K. Claypool. Xsnippet: mining for sample code. ACM Sigplan
Notices, 41(10):413–430, 2006.

[205] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes. Oreo: Detection
of clones in the twilight zone. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 354–365. ACM, 2018.

[206] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. Sourcerercc: Scaling
code clone detection to big-code. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pages 1157–1168. IEEE, 2016.

[207] C. B. Seaman. Qualitative methods in empirical studies of software engineering. IEEE
Trans. Softw. Eng., 25(4):557–572, July 1999.

[208] R. W. Selby. Enabling reuse-based software development of large-scale systems. IEEE
Transactions on Software Engineering, 31(6):495–510, 2005.

[209] A. Shrikumar. Designing an Exploratory Text Analysis Tool for Humanities and Social
Sciences Research. University of California, Berkeley, 2013.

[210] W. M. Shyu, E. Grosse, and W. S. Cleveland. Local regression models. In Statistical
models in S, pages 309–376. Routledge, 2017.

197



[211] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. Automatic error elimina-
tion by horizontal code transfer across multiple applications. In PLDI ’15: Proceedings
of the 36th ACM SIGPLAN Conference on Programming language design and imple-
mentation, volume 50, pages 43–54. ACM, 2015.

[212] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes. How well do search engines
support code retrieval on the web? ACM Transactions on Software Engineering and
Methodology (TOSEM), 21(1):4, 2011.

[213] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of software
engineering work practices. In Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON ’97, pages 21–. IBM Press,
1997.
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