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Figure 1: A user interactively synthesizes a regular expression (regex) that accepts phone numbers starting with an optional ‘+’.
After 1) adding some positive and negative examples, the user 2) marks the + sign as literal and the following numbers as a general
class of digits to specify how individual characters should be treated by the synthesizer. To refine the synthesis result, the user can
either 3) directly mark subexpressions as desired or undesired in the final regex, or 4) ask for additional examples to validate and
enhance her understanding of a regex candidate as well as identify and label counterexamples, therefore adding them to the set of
user-provided input-output examples.

ABSTRACT
Programming-by-example (PBE) has become an increasingly
popular component in software development tools, human-
robot interaction, and end-user programming. A long-standing
challenge in PBE is the inherent ambiguity in user-provided
examples. This paper presents an interaction model to dis-
ambiguate user intent and reduce the cognitive load of un-
derstanding and validating synthesized programs. Our model
provides two types of augmentations to user-given examples:
1) semantic augmentation where a user can specify how differ-
ent aspects of an example should be treated by a synthesizer
via light-weight annotations, and 2) data augmentation where
the synthesizer generates additional examples to help the user
understand and validate synthesized programs. We imple-
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ment and demonstrate this interaction model in the domain of
regular expressions, which is a popular mechanism for text
processing and data wrangling and is often considered hard to
master even for experienced programmers. A within-subjects
user study with twelve participants shows that, compared with
only inspecting and annotating synthesized programs, inter-
acting with augmented examples significantly increases the
success rate of finishing a programming task with less time
and increases users’ confidence of synthesized programs.

Author Keywords
Program synthesis; disambiguation; example augmentation

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Interactive systems and tools;

INTRODUCTION
Program synthesis has been increasingly applied to many appli-
cation domains, e.g., software development tools [15, 50, 62,
29], human-robot interaction [47, 35], and end-user program-
ming [32, 22, 36, 6, 38]. Many program synthesis techniques
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adopt a programming-by-example (PBE) paradigm, where
users provide a set of input-output examples to describe the in-
tended program behavior. Providing examples can be a natural
way to express human intent, but examples are also a partial
specification: they only describe desired program behavior on
a limited number of inputs. There are many possible programs
that match the user-provided examples but may diverge from
the user-intended behavior on unseen inputs.

Many PBE systems require users to provide additional exam-
ples to resolve ambiguities. However, prior work has shown
that users are reluctant to provide more than a few exam-
ples [31]. Even when they do, inexperienced users are not
good at providing representative examples that cover the hy-
pothetical input space [34, 44]. Several interactive approaches
have been proposed to enable users to directly refine synthe-
sized programs rather than crafting additional examples [42,
10, 30, 46]. Unfortunately, these approaches assume users
are capable of and willing to inspect and edit programs. This
fundamental assumption may not hold in many domains, espe-
cially for novice programmers and end-users without enough
expertise in programming. Some approaches have explored
the middle ground by rendering synthesized code in a human-
friendly format [42, 10], but users still need to spend sub-
stantial time comprehending the program. This is cognitively
demanding, especially when multiple candidate programs are
synthesized and provided to users.

In this paper, we argue that, for both programmers and non-
programmers, it is more natural to clarify their intent on top of
the original examples they give, rather than the programs syn-
thesized by a foreign PBE system. We introduce an interaction
model that supports two types of augmentation on user-given
examples: (1) Semantic augmentation enables users to anno-
tate how input examples should or should not be generalized
to other similar contexts by a synthesizer. (2) Data augmen-
tation automatically generates many corner cases for users
to validate and enhance their understanding of synthesized
programs and potentially choose to label as counterexamples.
We hypothesize that it would be less mentally demanding for
users to interactively augment original input-output examples
with richer semantics and select from additional examples
automatically generated for them, compared with inspecting
synthesized programs and editing them.

We instantiate our interaction model in the domain of regular
expressions and develop an interactive synthesizer called RE-
GAE. Regular expressions (regexes henceforth) are a versatile
text-processing utility that has found numerous applications
ranging from search and replacement to input validation. In
addition to being heavily used by programmers, regexes have
gained popularity among data scientists and end-users. Despite
their popularity, regexes are considered hard to understand and
compose, as well as error-prone, even for experienced pro-
grammers [5, 4, 55]. As an instance of semantic augmentation,
REGAE allows users to mark parts of input examples that
should be kept verbatim or generalized to a character class
such as digits in a regex. As an instance of data augmentation,
REGAE automatically generates two types of additional inputs,
those similar to the user-provided examples and corner cases,

and then clusters them based on how synthesized programs
behave on them. Hence users do not have to mentally simulate
the synthesized regexs on those new inputs. When multiple
candidate regexes are selected, REGAE generates input exam-
ples that exhibit behavioral discrepancies among them.

We conducted a within-subjects study that involves twelve
programmers with various levels of expertise in regular ex-
pressions. When interacting with augmented examples, all
twelve participants successfully completed regex tasks from
Stack Overflow (SO). In contrast, only four participants com-
pleted the tasks by manually providing counterexamples and
annotating regex candidates as proposed in [46]. Participants
felt much more confident about the synthesis result and re-
ported less mental demand and stress, when they were able to
see how a regex operates on many other similar examples and
corner cases. In addition to the lab study, we demonstrated
that our interactive synthesizer can also be used to solve an-
other twenty SO tasks in an average of five synthesis iterations
and six minutes, providing quantitative evidence about its
effectiveness on a variety of complex regex tasks.

The contributions of this paper are as follows:

• an interaction model based on a combination of semantic
augmentation and data augmentation of user-given exam-
ples to resolve intent ambiguity in program synthesis.
• an implementation of the proposed interaction model for

regular expression synthesis, as well as a discussion of how
to apply this interaction model to other domains.
• a within-subjects lab study and a case study demonstrating

how users with various levels of expertise can interact with
the synthesizer and guide it to generate desired programs.

RELATED WORK
Program synthesis is the task of automatically creating pro-
grams that match the user’s intent expressed in some kind of
specification. The problem of program synthesis dates back
to the 1960s, with a lot of pioneering work on deductive pro-
gram synthesis [21, 41, 40, 57]. Deductive program synthesis
takes a complete formal specification as input, which in many
cases proves to be as complicated as writing the program it-
self [24]. More recently, program synthesis techniques have
adopted inductive specifications (e.g., input-output examples,
demonstrations, natural-language descriptions) which are eas-
ier to provide by users. In this paper, we focus on augmenting
programming-by-example (PBE) techniques that use exam-
ples as the specification. Recently, PBE has been pursued for
various tasks, e.g., data extraction [33], data filtering [61], data
visualization [59], string transformations [22], table transfor-
mations [23, 14], automated code repair [12, 50], map-reduce
program generation [54], grammar generation [2], and imple-
menting network configurations [51, 65].

Synthesis from ambiguous example-based specifications
A long-standing problem in PBE is the inherent ambiguity
in user-provided examples. Since examples only specify
the user’s intended program behavior for a limited number
of inputs, a PBE system may generate many plausible pro-
grams that are consistent with the user-provided examples but
which do not produce intended results on additional inputs



that the user also cares about. Most PBE systems from the pro-
gramming languages and machine learning communities use
human-crafted or machine-learned inductive biases to resolve
the ambiguity in example-based specifications. Such inductive
biases specify which aspects of the examples to generalize
and which programs to prioritize during back-end searches
over the program space. Inductive biases can take various
forms such as hand-crafted heuristics [22, 23], distance-based
objective functions [11], hard-coded distributions [13, 9], and
probabilistic models learned from large code corpora [49, 53].
Improving inductive biases in PBE systems can drastically
reduce the time to arrive at a user-intended program, but it
does not amount to mind-reading: it still needs appropriately
chosen examples on which to perform induction and lacks
flexibility to address different needs or preferences of users.

Clarifying user intent through interactions
When inductive biases fall short of inferring user-intended pro-
grams, many PBE systems fall back to having users actively
provide additional examples to disambiguate their intent. This
requires users to fully understand the synthesized programs,
recognize undesired behavior, and craft counterexamples to
refute the undesired behavior. This is cognitively demand-
ing. Prior work has shown that users are reluctant to and not
good at providing high-quality examples when using PBE
systems [34, 44, 31]. Our work addresses this challenge of
eliciting informative examples from the users by generating
and clustering many similar examples and corner cases, based
on the user’s provided examples. Users do not have to stare
at a synthesized program and fully understand its semantics.
Instead, they can validate and enhance their understanding by
glancing over those additional examples.

The idea of automatically generating distinguishing inputs for
ambiguity resolution has also been explored by several other
work [29, 42, 58]. Jha et al. propose to encode synthesized pro-
grams as logic formulae and then use a SMT solver to identify
an input that causes those programs to produce different out-
puts. Scythe [58] is an interactive synthesizer for SQL queries.
Similar to Jha et al. [29], it uses a SMT solver to find a dis-
tinguishing input when two synthesized SQL queries are not
equivalent to each other. However, programs in many domains
cannot be easily encoded as logic formulae and fed to SMT
solvers. Though FlashProg [42] does not rely on SMT solving,
it requires users to provide a large text document as a pool
of additional inputs to test on and draw distinguishing inputs
from. FlashProg also cannot identify hypothetical corner cases
that are not included in the given document. Unlike these tech-
niques, our system converts synthesized regexes to automata
and uses transition coverage to explore the hypothetical input
space and generate unseen data.

Direct program manipulation to guide synthesis
Instead of eliciting additional examples from users, several
interactive approaches have been proposed to help users di-
rectly inspect and refine synthesized programs [42, 10, 30,
64]. FlashProg [42] paraphrases synthesized programs in
English and clusters programs with common structures for
ease of navigation. Wrex [10] transforms synthesized pro-
grams to readable code and allows users to directly edit them.

Wranger [30] and STEPS [64] support task decomposition
by allowing users to construct a target program step by step.
Wranger [30] recommends a ranked list of primitive operators
at each synthesis step and lets users select an operator and
edit its parameters. STEPS [64] allows users to specify the
latent structure in a text document using nested color blocks.
However, users of such systems often find it hard to figure
out the meaning of possible primitive operators [64] or the
intermediate steps to reach the final solution [25]. Recently,
Peleg et al. proposed a new interaction model that enables
users to specify which parts of a synthesized program must be
included or excluded in the next synthesis iteration [46]. Their
key insight is that synthesized programs may have some parts
that are completely wrong and some parts that are on the right
track, which can be leveraged to prune the search space.

The major difference between our approach and these direct
manipulation approaches is that we focus on augmenting in-
teractions with examples rather than synthesized programs;
this can reduce the user’s need to engage with what might be
a complicated synthesized program, even if it is rendered in a
relatively human-friendly way. We argue that, compared with
inspecting and editing programs, interacting with examples is
a more natural way to disambiguate user intent, especially for
novice programmers and end-users.

The semantic augmentation feature in our work shares some
similarity to abstract examples [8]. Drachsler-Cohen et al. pro-
posed an approach to generalize a concrete example to an
abstract example by identifying which parts of the concrete
example can vary and which parts must remain constant to
produce the same output of a synthesized program [8]. The
inferred abstract example is presented to users to help them
decide whether the synthesized program is correct or not. Com-
pared with abstract examples, semantic augmentation is rather
an interactive feature for specification authoring. It provides
a flexible interface for users to easily specify how a synthe-
sizer should treat different parts of an input. In other words,
semantic augmentation allows users to shape the inductive
bias of the synthesizer, by specifying the direction of intended
generalization for different parts of an input, from concrete
to one of several different possible classes of characters, e.g.,
capital letters, digits, etc. LAPIS [43] and TOPES [52] in-
troduced more sophisticated semantic patterns on input data,
such as structural relationships and numeric constraints, which
we wish to support in future work.

PRELIMINARIES
This section briefly reviews a standard PBE technique for
synthesizing regular expressions. We choose to focus on the
domain of regexes for two main reasons. First, regexes are a
versatile text-processing utility with many applications. They
are used by expert and novice programmers, as well as end-
users with very limited programming knowledge. On the other
hand, regexes are found to be hard to understand and compose,
even for experienced programmers [5, 4, 55]. Therefore, it is
appealing to automatically generate regexes for users. Second,
regexes are notoriously hard to synthesize due to high ambi-
guity in user-given examples [45]. An analysis of 122 regular



expression tasks in Stack Overflow shows that only 18 tasks
can be solved using examples only, as detailed in Section 6.2.

The DSL for regular expressions
We use an existing domain-specific language (DSL) to express
regular expressions, which is also adopted by other regex
generation techniques [39, 7]. Figure 2 describes the DSL
grammar. In the simplest case, a regex is a character class,
denoted by angle brackets. For instance, <num> matches any
digits from 0 to 9, <let> matches any English letters, <low>
and <cap>match lower and upper case letters respectively, and
<any> matches any character. We also have character classes
that only match one single character such as <a>. These
character classes can be used to build more complex regexes
with different operators such as startwith and star. For
instance, startwith(<num>) matches any strings starting
with a digit. As another example, star(<num>) matches
zero or more digits. Operators in this DSL provide high-level
primitives that abstract away lower-level details in standard
regex. This DSL is also more amendable to program synthesis
as well as readable to users. We also note that this DSL has
the same expressiveness power as a standard regular language.

e := <num> | <let> | <low> | <cap> | <any> | · · · | <a> | <b> | · · ·
| startwith(e) | endwith(e) | contain(e) | concat(e1,e2)
| not(e) | or(e1,e2) | and(e1,e2)
| optional(e) | star(e)
| repeat(e,k) | repeatatleast(e,k) | repeatrange(e,k1,k2)

Figure 2: The DSL for regular expressions.

The synthesis algorithm
Given this DSL, we have developed a regex synthesizer that
performs top-down enumerative search over the space of pos-
sible regexes defined by the DSL. This is a standard approach
adopted by many existing synthesis techniques [16, 15, 63,
62]. Our regex synthesizer takes both positive and negative ex-
amples: a positive example is a string that should be accepted
by the desired regex whereas a negative example is a string
that should be rejected by the regex. Given these examples,
our synthesizer generates a regex in the given DSL that accepts
all positive strings and rejects all negative strings.

Algorithm 1 describes the basic synthesis process. The syn-
thesizer maintains a worklist of partial regexes and iteratively
refines them, until it finds a concrete regex that satisfies the
given examples. The worklist is initialized with a partial regex
with a symbolic value e (line 1). In each iteration, the syn-
thesizer gets one regex p from the worklist (line 3). If p is
concrete with no symbolic values, the synthesizer checks if p
satisfies all user-given examples (lines 4-5). Otherwise, p is
symbolic, and our algorithm refines p by expanding a symbolic
value in p (lines 7-8). For instance, consider a partial regex
concat(e1,e2). e1 can be expanded to any character class,
which yields partial regexes such as concat(<num>,e2) and
concat(<let>,e2). e1 can also be expanded to an operator,
yielding partial regexes such as concat(startwith(e3),e2)
and concat(repeatatleast(e3,k1,k2),e2). All these par-
tial regexes will be added into the worklist for further refine-
ment (line 12).

Algorithm 1: Top-down enumerative synthesis
Input : a set of string examples E
Output : a regular expression that is consistent with E

1 worklist := {e }
2 while worklist is not empty do
3 p := worklist .removeFirst()
4 if p is concrete then
5 if p is consistent with E then return p
6 else
7 s := selectSymbol (p)
8 worklist’ := expand (p, s)
9 for p’ in worklist’ do

10 if p’ is infeasible then remove p’ from worklist’
11 end
12 worklist := worklist ∪ worklist’
13 end
14 end

The number of regexes in the worklist will grow exponentially
over iterations. To make it scale, different implementations of
this algorithm leverage different heuristics to prune the search
space (lines 9-11 in Algorithm 1). Despite all these efforts,
it is still very challenging to scale existing synthesizers to
solve real-world problems where desired regexes are complex,
e.g., those in Stack Overflow posts. Furthermore, even if the
synthesizer is able to quickly generate a regex that satisfies
the user-provided examples, it may still not be the intended
one. These factors make program synthesis a long-standing
challenge. In the next section, we describe our proposed
interaction model to tackle this disambiguation challenge.

SYNTHESIZING WITH AUGMENTED EXAMPLES:
A USAGE SCENARIO
This section illustrates our proposed interaction model based
on a realistic task from Stack Overflow [1]. We also compare
our proposed method with manually creating counterexamples,
which is the defacto way of providing user feedback in many
PBE systems, as well as a state-of-the-art method that allows
direct and explicit feedback on synthesized programs by anno-
tating parts of a program as desirable and undesirable [46].

Suppose Alex is a data scientist and he wants to extract phone
numbers from a text document. He needs to write a regular ex-
pression that accepts phone numbers starting with an optional
+ sign, followed by a sequence of digits. Though he is familiar
with R and Python, he has only used regular expressions a few
times before. He finds it too time-consuming to ramp up again,
so he decides to try an interactive regex synthesizer, REGAE.

Alex starts with providing several input strings that should
be accepted or rejected by the desired regex, as shown in
Figure 3a. REGAE quickly synthesizes five regex candidates
that satisfy those examples (Figure 3b). Though this is the
first time Alex sees regexes in a domain-specific language, he
finds the function names used in the regexes more readable
than standard regexes. For some expressions such as <num>
and repeatatleast, he looks up their definitions in the cheat
sheet. Alex glances over those regex candidates and realizes
that none of them are correct. The top three regexes only try to
match concrete digits, 7, 8, 9, while the last two only expect



(a) The input-output examples

(b) The synthesis result

Figure 3: Alex adds several input-output examples and re-
ceives five regexes that satisfy these examples (Iteration 1).

input strings to have at least five characters. Apparently, all
these candidates overfit the positive examples.

The defacto way: providing counterexamples. To correct this
overfitting issue, Alex adds a counterexample 123 to refute
regexes in Figure 3b. The synthesizer returns five new regexes
(Figure 4). Though Alex does not fully understand the subtle
differences between those candidates, all those candidates still
look wrong to him since they all use the endwith operator.

The state-of-the-art: annotating synthesized programs.
Alex cannot easily come up with a counterexample that does
not end with a digit, so he decides to mark endwith as unde-
sired (Figure 5a). As a result, the synthesizer will not consider
endwith in the following synthesis iterations. However, the
new synthesis result in Figure 5b does not seem to be improved
at all. As the synthesized regexes become more complicated
over iterations, Alex starts feeling tired of inspecting those
regexes. In particular, he is concerned about going down the
rabbit hole since the synthesis process seems off track.

Semantic augmentation: marking parts of input strings as
literal or general. Alex decides to step back and change how
the synthesizer treats his input examples. First, he marks the
+ sign as a literal value to specify that it should be treated
verbatim during synthesis (Figure 6a). Then, he marks the
numbers after + as a general class of digits to specify those
numbers should be generalized to any digits (Figure 6b). After

Figure 4: After adding a new positive example 123, Alex
receives five new regex candidates (Iteration 2).

(a) Mark endwith as undesired

(b) The synthesis result

Figure 5: Alex marks the endwith operator as undesired to
enforce the synthesizer not to consider this operator in the
subsequent synthesis iterations (Iteration 3).

adding those semantic annotations to input examples, Alex
receives a new set of regex candidates (Figure 6c). Alex finds
the synthesis result starts making sense since the + sign finally
shows up in the regex candidates.

Data augmentation: generating additional input examples
and corner cases. The first regex in Figure 6c looks correct
to Alex, but he is not sure whether this regex has any un-
expected behavior. Alex decides to ask REGAE to generate
some additional input examples for him. He selects the first
regex and clicks on “Show Me Familiar Examples.” REGAE
automatically generates many similar inputs by mutating the
examples Alex have already given. Negative examples are
clustered based on the failure-inducing characters and are also
paired with similar positive examples. This design is inspired
by previous findings on analogical encoding—human subjects
tend to focus on superficial details when only seeing single
examples, while focusing on deeper structural characteristics
when comparing and contrasting multiple examples [18].

By glancing over the descriptive cluster headers and checking
the examples in each cluster, Alex realizes that the selected
regex allows the first character to be either + or a digit but
requires the following characters to be digits only. This seems
aligned with his expectations. Alex then clicks on “Show Me
Corner Cases” to check if there are any hypothetical corner
cases he has not thought of. REGAE performs an deep explo-



(a) Mark the + sign as a literal value.

(b) Mark the numbers after + as a general class of digits.

(c) The synthesis result

Figure 6: Alex specifies how individual characters in an input
example should be treated by a synthesizer (Iteration 4).

ration of the underlying automaton of the regex and generates
input examples for the uncovered paths in the automaton (Fig-
ure 7b). The first corner case is an empty string and the second
corner case is a single + sign, both of which are handled as he
would want them to be. After inspecting those corner cases,
Alex feels more confident about the first regex candidate.

Now Alex is a little indecisive between the first two regex
candidates in Figure 6c. Though he vaguely understands the
difference between optional and star, he wants to double
check. Alex selects both regexes and clicks on “Show Me
Corner Cases” to solicit some examples that distinguish their
behavior. By glancing over those distinguishing examples in
Figure 8, Alex confirms that the second regex can accept more
than one + signs, which is wrong. Alex finally decides the first
regex is the correct one, which takes four synthesis iterations
without writing a single line of regular expressions.

ALGORITHMS AND IMPLEMENTATION
This section describes the implementation details that support
the interaction features described in the previous section.

(a) “Familiar examples” that are similar to user-given examples.

(b) “Corner cases” that Alex may never think of.

Figure 7: Alex asks for additional input examples to help him
understand the functionality of synthesized regexes.

Incorporating User Annotations into Synthesis
Semantic annotations on input examples are parsed to literal
values and general character classes first and then added to
an include or exclude set. If a character is marked as literal,
it will be added to the include set to enforce the synthesizer
to generate a regex that contains this character. Sometimes
a user may mark a sequence of characters as literal. Since
it is hard to infer whether the user wants the synthesizer to
treat the entire sequence verbatim or individual characters in
it verbatim regardless of their positions, we decide to add both
the entire sequence and individual characters to the include set
to give two options for the synthesizer to choose. If a character
or a sequence of characters is marked as a general class of
characters such as digits or letters, we add the general character
class into the include set and add the marked characters into
the exclude set.

Given the include set and the exclude set, the expand function
(line 8 in Algorithm 1) will ensure that none of the elements
in the exclude set will be selected to expand a partial regex. It
will assign higher priorities to elements in the include set to
expand compared with operators and character classes not in



Figure 8: REGAE generates input examples that disam-
biguate two regular expressions with subtle differences.
optional(<+>) only accepts strings with zero or one + sign,
while start(<+>) accepts strings with zero or more + signs.

the include set. After each expansion, regexes in the worklist
are ranked by the number of elements in the include set they
contain. The regex that contains the most elements in the
include set will be placed at the beginning of the list and will
be evaluated first in the next loop iteration.

Regarding regex annotations, if a character class or an operator
is marked as included or excluded, it will be added to the in-
clude or exclude set accordingly. If a subexpression is marked
as included, it will also be added to the include set to expand
a partial regex. If a subexpression is marked as excluded, we
add a filter at line 10 in Algorithm 1 to remove any regexes
that contain the subexpression from the worklist.

Generating and Clustering Input Examples
REGAE supports two input generation algorithms that com-
plement each other. The first algorithm generates input data
similar to user-given examples, while the second generates hy-
pothetical corner cases by traversing the underlying automaton
of a regex. Those hypothetical corner cases may look exotic to
users but may reveal cases that users may not have thought of.

Example-driven input generation. The first algorithm takes a
positive example and a regex as input, and generates additional
positive and negative examples similar to the given example
(Algorithm 2). To enable systematic examination of the given
regex, REGAE first converts the regex to a deterministic finite
automaton (DFA) [3] that decides the class of strings repre-
sented by the regex (line 3 in Algorithm 2). Figure 9a shows
the minimized DFA of the first regex candidate in Figure 6c.
Then REGAE examines which transition in the DFA would be
taken to accept each character in the given example (line 4).
Figure 9d shows the path through which the DFA matches a
positive example +91789 from Alex. Based on the accepted
characters of the first transition in the DFA, the first character
+ in +91789 can also be replaced with any digits from 0 to
9 to generate other inputs that are still accepted by the DFA
(lines 6-7). On the other hand, if + is mutated to a character,
such as a letter, that cannot be accepted by any other outgoing
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(a) The minimal DFA
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(b) Fully specified DFA
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(c) The DFA complement
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(d) The path that a positive example +91789 takes through the DFA.
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(e) Four paths that achieve 100% transition coverage of the DFA complement.

Figure 9: The DFA and its complement of a regular expression,
^+?[0-9]+$. Circled states are accept states. Each transition
is labelled with characters that are accepted by the transition.

Algorithm 2: Example-driven input generation
Input : a positive input example e and a regular expression r
Output : a set of positive and negative examples

1 positives := /0
2 negatives := /0
3 dfa := convertToDFA (r)
4 states := matchStates (dfa, e)
5 for si in states do
6 accept := the accepted chars in the transition from si to si+1
7 p := replace the i-th char in e with a random sample in accept
8 positives := positives ∪ p
9 acceptall := the accepted chars in all transitions from si

10 n := replace the i-th char in e with a random sample not in acceptall
11 negatives := negatives ∪ n
12 end
13 return positives ∪ negatives

transitions of State 0 in the DFA, the generated input will
be rejected by the first transition in the DFA (lines 9-10). In
this generation process, we use a random sampling method
to select characters accepted or rejected by a transition. This
process continues to process each character in the given input
example. As a result, we will get many additional inputs that
are one-character different from user-given examples.

Coverage-driven input generation. Though the first algo-
rithm generates additional input examples similar to the user-
provided examples, which may be easier for users to review, it
does not generate farther examples that explore a greater range
of the input space, e.g., various lengths, nor does it perform
any deeper exploration of the regex’s underlying automaton.
Algorithm 3 describes a complementary algorithm. It performs
breadth-first traversal on a DFA to identify possible paths to all
accept states (lines 15-31). Since a DFA may be cyclic, we use
transition coverage to guide the traversal process and terminate
it after all transitions have been visited, i.e., 100% transition



Algorithm 3: Coverage-driven input generation
Input : a regular expression r
Output : a set of positive and negative examples that cover all

transitions in the DFA of r and its complement DFA
1 dfa := convertToDFA (r)
2 positives := generate (dfa)
3 complement := compute a DFA that accept all strings rejected by dfa
4 negatives := generate (complement)
5 return positives ∪ negatives

6 function generate (dfa)
7 E := {( /0, “”)}
8 positives := /0
9 visited := /0

10 s0 := get the initial state of dfa
11 if s is accepted then
12 move an empty string to positives
13 end
14 E := {({s0 }, “”)}
15 while isAllTransitionsCovered (dfa, visited) do
16 for (p,e) in E do
17 s := the last state in p
18 D := all destination states transitioned from s
19 for d in D do
20 c := a random char in the accepted chars from s to d
21 p ′ := append d to p
22 e ′ := append c to e
23 if d is accepted then
24 move e ′ to positives
25 end
26 add (p ′,e ′) to E
27 end
28 visited := visited ∪ (s,d)
29 remove (p,e) from E
30 end
31 end
32 return positives

coverage. Note that one could also use other coverage metrics
such as state coverage and transition-pair coverage [60].

To generate negative examples, REGAE first computes the DFA
complement of a given regex by (1) converting the original
DFA (Figure 9a) to a fully specified DFA over the entire al-
phabet (Figure 9b) and (2) converting all accept states in the
DFA to non-accept and vice versa (Figure 9c), as described
in [28]. The DFA complement represents all input strings that
are not accepted by the original DFA. By performing the same
traversal on the DFA complement, we can generate inputs that
are accepted by the DFA complement, i.e., not accepted by the
original DFA. Figure 9e shows four paths that achieve 100%
transition coverage of the DFA complement in Figure 9c. Us-
ing this coverage-driven algorithm, we can identify paths that
have not been covered by user-given examples and generate
inputs that users may not have thought of. For each transition
in a path, we randomly sample one character from the accepted
characters of the transition to build up a new input example.

Distinguishing example generation. REGAE adapts the afore-
mentioned two input generation algorithms to generate exam-
ples for distinguishing between multiple regexes. Regarding
the example-driven algorithm, REGAE simply generates in-
puts for each regex and then only retains those inputs that
expose different behavior among selected regexes, e.g., ac-
cepted by one regex but rejected by other regexes. Regarding

the coverage-driven algorithm, REGAE first computes the dif-
ferences between the DFAs of every two selected regexes, a1
and a2, yielding two new distinct automata—one is the inter-
section of a1 and the complement of a2 (i.e., a1−a2), while the
other is the intersection of a2 and the complement of a1 (i.e.,
a2−a1). REGAE then performs the coverage-driven traversal
in Algorithm 3 to each of the two automata to generate inputs
that are accepted by one regex but not the other.

Clustering and rendering examples. REGAE clusters negative
examples based on the automaton state in which these exam-
ples are rejected by the regex. The failure-inducing character
in a negative example is highlighted in red to indicate where
the mismatch occurs. Furthermore, to help users understand
why a negative example is rejected, REGAE automatically gen-
erates an explanation based on the accepted characters of the
transition that rejects the example as the cluster header. Each
negative example is also juxtaposed with a positive example to
draw a comparison across examples for enhanced learning and
behavior recognition, inspired by analogical encoding [18].
By default, input examples in each cluster are sorted by length.

Incremental Computation
Most of the existing synthesis techniques completely restart
the search process from scratch after receiving user feedback
(e.g., new examples), without leveraging the computation re-
sult from previous iterations. As a result, the synthesis process
may unnecessarily take a longer time. REGAE adopts an in-
cremental synthesis strategy that resumes the search from the
previous iteration. Recall that our synthesis algorithm (Algo-
rithm 1) maintains a worklist of partial regexes. To achieve in-
cremental synthesis, REGAE will memoize the current worklist
after each iteration. In the next iteration, instead of initializing
the worklist with {e} (line 1 in Algorithm 1), REGAE restores
the worklist memoized in the previous iteration.

Incremental computation is sound only if a user does not
change her synthesis intent. However, in practice, users’ men-
tal models are constantly evolving. As a result, a user may
revert previous input-output examples or annotations. To en-
sure the soundness of our synthesis approach, if previous
examples or annotations are changed, we decide not to resume
the synthesis process from the previous iteration and start a
completely new synthesis process from scratch instead.

USER STUDY
We conducted a within-subjects study with twelve participants
to evaluate whether they can effectively guide program syn-
thesis using REGAE. We compared two versions of the system:
a baseline version with only regex annotation as proposed
in [46] and user-generated counterexamples, and a version that
added the input annotation (semantic augmentation) and auto-
generated examples (data augmentation). We investigated the
following research questions:

• RQ1. Can our interaction model help a user efficiently
disambiguate input examples and quickly arrive at a synthe-
sized program with intended behavior?
• RQ2. Can our interaction model reduce the cognitive load

of inspecting programs and increase the user’s confidence
in synthesized programs?



Participants
We recruited twelve Computer Science students (seven female
and five male) through the mailing lists of several research
groups at Harvard University. Participants received a $25
Amazon gift card as compensation for their time. Four partic-
ipants were undergraduate students and the other eight were
graduate students. Half of the participants had more than five
years of programming experience, while the other half had
two to five years of programming experience. Participants had
diverse prior experiences with regexes. Six participants said
they knew regex basics but only used it several times, five said
they were familiar with regexes and had used it many times,
and one said they had never heard about regexes before. The
majority of participants (8/12) said, when writing regexes, they
often had to search online to remind themselves of the details
of regexes or use websites such as regex101.com to test their
regexes. Ten out of twelve participants considered writing
regexes more difficult than writing other kinds of programs.
This is consistent with previous findings that regexes are hard
to read, understand, and compose [5, 4].

Programming Tasks
To design realistic programming tasks for regular expressions,
we searched on Stack Overflow (SO) using relevant keywords
such as “regex”, “regular expressions”, “text validation”. We
found 122 real-world string matching tasks that have both
English descriptions and illustrative input-output examples.
Among those 122 tasks, 18 tasks can be solved using these
illustrative input-output examples only. Thus there is no need
to solicit user feedback for these 18 tasks. We selected three
regex tasks from the remaining 104 unsolved tasks, which
require further disambiguation of user intent. The task descrip-
tions and the expected regexes in both our DSL and standard
regex grammar are listed below.

Task 1. Write a regular expression that accepts strings that do
not contain double hyphens (- -). [ Post 2496840 ]

not(contain(concat(<->,<->)))

^((?!\s\s).)*$

Task 2. Write a regular expression that allows only digits, ‘&’,
‘|’, ‘(’, or ‘)’. [ Post 21178627 ]

repeatatleast(or(<num>,or(<&>,or(<|>,or(<(>,<)>)))),1)

^[\d()&|]+$

Task 3. Write a regular expression that accepts phone num-
bers that start with one optional + symbol and follow with a
sequence of digits, e.g., +91, 91, but not 91+. [ Post 41487596 ]

concat(optional(<+>),repeatatleast(<num>,1))

^\+?\d+$

Methodology
We conducted a 75-min user study with each participant. Par-
ticipants completed two of the three regex tasks using REGAE
with different interaction features enabled. For one of the
two tasks, participants were allowed to use both the seman-
tic augmentation and data augmentation features we propose,
i.e., the experiment condition. For the other of the two tasks,

they were only allowed to use the regex annotation feature
as described in [46], i.e., the control condition. Both the or-
der of task assignment and the order of interaction model
assignment were counterbalanced across participants through
random assignment.

Before each task, participants were given a 15-min tutorial
about the interaction features they would use. In each task,
participants first read the task description and then came up
with their own positive and negative examples to start the
synthesis. They continued to refine the synthesis result using
the assigned interaction features, until they found a regex that
looked correct to them. They were given 15 minutes for each
task. If they did not find a correct regex within 15 minutes,
we moved on to the next session. At the end of each task,
participants answered a survey to reflect on the usability of
the interaction model used in the task. They were also asked
to answer five NASA Task Load Index questions [26] to rate
the cognitive load of using the interaction model, as shown
in Table 1. After finishing both tasks, participants answered
a final survey to directly compare the two interaction models.
Each survey took about five minutes.

NASA Task Load Index Questions
Q1. How mentally demanding was using this tool?
Q2. How hurried or rushed were you during the task?
Q3. How successful would you rate yourself in accomplishing the task?
Q4. How hard did you have to work to achieve your level of performance?
Q5. How insecure, discouraged, irritated, stressed, and annoyed were you?

Table 1: Participants rated different aspects of the cognitive
load of using each interaction model on a 7-point scale.

USER STUDY RESULTS
User Performance. When using the semantic and data aug-
mentation features, all 12 participants successfully found a
correct regex with an average of 3.3 synthesis iterations. In
contrast, when they can only manually add counterexamples
and regex annotations, participants took significantly more
synthesis iterations (7.7 on average) and only 4 of them suc-
cessfully found a correct regex. With timed-out participants’
time truncated at 15 minutes, the average task completion time
with REGAE is 7.3 minutes, while the average task completion
time with the baseline tool is 12.5 minutes. The mean differ-
ence of 5.2 minutes is statistically significant (paired t-test:
t=4.37, df = 11, p-value=0.0011).

To disentangle the effects of different interaction features, we
analyzed the user study screencasts and manually counted how
often each feature was utilized. In the control condition, par-
ticipants had to manually construct counterexamples to refute
incorrect regex candidates in more than half of the synthe-
sis iterations (4.5/7.7). Participants in the control condition
also heavily utilized the regex annotation feature to prune the
search space. On average, they marked 5 subexpressions as
included or excluded in 3.1 out of 7.7 iterations. In contrast,
this regex annotation feature was significantly under-utilized
in the experiment condition—only four of 12 participants used
it and they only gave one regex annotation in 0.6 iterations on
average. Instead, all participants in the experiment condition
used the semantic augmentation feature and gave an average
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Figure 10: When using REGAE, participants felt twice more
confident in the regexes synthesized on behalf of them.

of 3.2 input annotations in 1.4 out of 3.3 iterations. Besides,
all participants heavily utilized the data augmentation feature
to generate additional inputs in 1.9 of 3.3 iterations. Seven of
12 participants directly reused automatically generated inputs
(3.4 inputs on average) as counterexamples. The compari-
son of feature utilization between the control and experiment
conditions indicates that semantic augmentation and data aug-
mentation contributed significantly to the high success rate of
regex tasks in the experiment condition.

We also coded participants’ feedback in the post survey to
analyze why they failed to synthesize desired regexes in the
control condition. Seven of 12 participants found it hard
to decide which operators or subexpressions to include or
exclude. Because participants were not certain about the final
regex, it was difficult to foresee what to include or exclude.
Some of them explained that they actually ended up wasting
a lot of time since they gave an ineffective or wrong regex
annotation due to misconceptions, which sent the synthesizer
off track. Six participants complained it was time-consuming
to manually craft representative counterexamples to refute
incorrect regexes. Five participants found it hard to parse and
interpret synthesized regexes within a short amount of time.

User Confidence and Cognitive Load. In the post survey, par-
ticipants reported that they felt significantly more confident
in the synthesized regexes when they were given options to
see additional examples and corner cases generated by REGAE.
Figure 10 shows the distribution of their responses (7 vs. 3.5
on a 7-point scale). P10 said, “[REGAE made it] really easy
to experimentally verify whether the regex is right or not, also
made it way easier to parse the regex after seeing the exam-
ples.” Experienced regex programmers also appreciated those
automatically generated corner cases. P6 said, “even though
I am decently good at regexes and I am fast at parsing and
understanding them, I think many times there are corner cases
I simply don’t see beforehand. Seeing concrete positive and
negative examples is a lot more helpful and I get immediate
feedback on correctness of the regex.”

Participants also perceived less mental demand and frustration
during the task when interacting with augmented examples
(Figure 11). The main reason was that they no longer needed
to inspect regexes very carefully or think very hard to find
counterexamples. Instead, they could merely glance over the
automatically generated examples instead. Though those ad-
ditional examples were simply rendered in a cluster view, the

Figure 11: Cognitive load measured by NASA TLX [26]

majority of participants (9/12) found it more helpful than over-
whelming. P7 said, “it was way more intuitive to look at
examples and change my input examples based on familiar
cases and corner cases.” Specifically, participants appreci-
ated that each cluster had a descriptive header, and individual
characters were highlighted in green or red to make failure-
inducing characters obvious. Besides, by annotating certain
characters in an input example as general or literal, partici-
pants did not need to add many input examples and thus saved
a lot of manual effort. In the control condition, participants
tended to enumerate all possible characters (e.g., all digits
from 0 to 9) that should be matched by a desired regex.

Qualitative Analysis. The most appreciated feature (12/12) is
to annotate input examples with the notions of generality and
specificity. P2 wrote, “it gives me freedom to specify what
characters should be matched verbatim, which is exactly what
I wished for.” Eleven participants (92%) preferred to annotate
input examples than regexes, because it was more intuitive
to directly express their intent through examples. Marking
characters as general or literal also significantly reduced the
number of examples they needed to provide. In contrast, an-
notating regexes required careful examination of synthesized
regexes, and participants were also concerned with providing
wrong regex annotations due to their misconceptions of regex
operators. Though semantic augmentation is more preferred
than regex annotation, this should not be interpreted as regex
annotation no longer being needed. Still, seven participants
(58%) found regex annotation helpful in narrowing down the
search space. In particular, two participants explained that
regex annotation became much easier with automatically gen-
erated examples, since those examples helped define some
operators that were hard to understand before. Seven partici-
pants (58%) really liked the data augmentation feature with
no complaints at all. Four participants (33%) liked this feature
but also suggested that it was not easy to immediately figure
out which examples to focus on.

Participants did point out several areas where the interface
could be improved. Five participants suggested to generate
regex candidates with greater diversity and variations. Three
participants wished to manually add a partial regex in their
mind to start the synthesis. Five participants suggested to
select a small set of representative examples to focus on rather
than showing all generated examples. Two participants wished
to have a feature that automatically converts a synthesized



regex to the standard regex format so they can copy and paste
it to their own code.

When asked how such an interactive synthesizer would fit into
their programming workflow, 10 participants said they would
definitely like to use it when they encounter a complex task or
when they can not find an online solution. P1 wrote, “I usually
go to regex101.com to test my expression with an example,
which takes a while before I arrive at the right expression.
With this tool, I can easily come up with the right expression
to use in my program.” One participant said she may not
use it end-to-end since she generally had a good idea about
what to write, but she found the data augmentation feature
very helpful to discover unexpected behavior on corner cases.
Two participants said they would love this synthesizer to be
incorporated into their IDEs as a plugin.

QUANTITATIVE EVALUATION
We conducted a case study with 20 realistic regular expres-
sion tasks to investigate the effectiveness of REGAE on a
variety of complex tasks. The tasks were randomly se-
lected from the Stack Overflow benchmarks in Section 6.2.
The 20 tasks and screenshots of their final solutions synthe-
sized by REGAE are included in the supplementary material.
The tasks include standard regex tasks such as validating
numbers delimited by comma ( Post 5262196 ), validating US
phone numbers ( Post 23195619 ), and validating version num-
bers ( Post 31649251 ), as well as custom tasks such as accepting
strings with only seven or ten digits ( Post 2908527 ) and validat-
ing decimals with up to 4 decimal places ( Post 30730877 ).

For each task, the first author read its description on Stack
Overflow and solved the task by interacting with REGAE. The
author stopped when REGAE synthesized a regex equivalent to
the accepted answer in the Stack Overflow post. This simulates
an ideal condition where a user is familiar with the tool and
has sufficient knowledge of regexes. The purpose of this case
study is to investigate to what extent our interactive synthesizer
can solve realistic tasks, rather than its learnability or usability.

The experimenter successfully solved all 20 tasks in an average
of 5.9 minutes (median=4.9, SD=0.2) and within 5.4 iterations
(median=5, SD=3.4). 16 of 20 tasks are solved within 7 min-
utes and 6 iterations. The power of REGAE was fully unleashed
when all three features were used together—semantic augmen-
tation, data augmentation, and regex annotation. Marking in-
dividual characters as general or literal provided crucial hints
about how to generalize user-given examples during synthesis.
Without this feature, the synthesizer often started from a com-
pletely wrong direction or times out without identifying any
regex candidates in one minute. Though the experimenter was
very familiar with the underlying regex DSL, he found it te-
dious to constantly read many regex candidates over iterations.
In particular, regex candidates often became over-complicated
after 3 or 4 iterations. In such cases, automatically generating
corner cases made it easier to quickly craft counterexamples.
The experimenter also found that in many situations, regex
annotation could be a convenient way to steer the synthesis
direction. Of course, this required a user to be familiar with
the regex DSL or have some notion of the final regex. The ex-
perimenter often excluded some operators to prune irrelevant

search paths through the program space, which significantly
sped up the synthesis process.

Four tasks required a divide-and-conquer strategy to solve,
which was not expected. For example, one task asks for a
regex to validate UK mobile numbers that can be between 10-
14 digits and must start with either 07 or 447 ( Post 16405187 ).
To solve this task, the experimenter first only added numbers
starting with 07 and synthesized a sub-regex, ^07\d{8,12}$
that matches this type of phone numbers. Then he marked
it as desired, removed existing examples, and added another
type of phone numbers starting with 447. He synthesized
another sub-regex, ^447\d{7,11}$ to match phone numbers
starting with 447 and also marked it as desired. Finally, he
added both types of phone numbers as examples and synthe-
sized the final regex, ^07\d{8,12}|447\d{7,11}$. Having
both sub-regexes marked as desired, it was easier for REGAE
to assemble them together to create the final regex. Prior
work shows that inexperienced users may find it difficult to
decompose a complex task into sub-tasks [34]. It would be
interesting to investigate how to teach inexperienced users
such task decomposition strategies through training sessions
or prompted hints in future work.

DISCUSSION AND FUTURE WORK
In this paper, we propose a new interaction model for interac-
tive program synthesis. Our interaction model is mainly de-
signed for programming-by-example (PBE) systems that take
input-output examples as input. There are other kinds of PBE
systems that take as input user demonstrations such as video
recordings and interaction traces, also known as programming-
by-demonstration or PBD [6, 38, 37, 36, 35, 48, 47]. Applying
our interaction model to PBD systems requires further in-
struments, e.g., enabling tagging a video clip or rendering
interaction traces in a more readable and editable format for
users to operate on. This by itself is an interesting direction
for further investigation.

This work demonstrates the feasibility and effectiveness of
guiding program synthesis through augmented examples in a
specific domain, regular expressions. The proposed interaction
model can also be generalized to synthesize other kinds of
programs. For example, code transformation synthesis [50]
takes program source code before and after transformation as
input-output examples and generates transformation scripts
that refactor or repair other similar code locations. While
the underlying implementation would need to be adapted or
extended to fit the underlying synthesizer, the semantic anno-
tation interface is applicable to code transformation synthesis:
similar to how users mark characters in an input string as literal
or general, users could also mark function calls and variable
names that should be kept constant or generalized to match
other similar code. While the automaton-based input genera-
tion algorithms in Section 5 are specific to regular expressions,
the idea of generating additional input-ouput examples to fa-
cilitate comprehension and validation of synthesized programs
is applicable in other domains as well. There are many other
kinds of input generation methods to leverage or adapt. For
example, in the domain of grammar synthesis [2], one could
leverage grammar-based fuzzing techniques [19, 27, 20] to
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generate additional programs as inputs to test a synthesized
grammar. As another example, in the domain of generating
object-oriented programs [15], one could consider test suite
generation techniques such as EvoSuite [17] and Pex [56] to
generate additional inputs for synthesized programs.

Our current system has three major limitations that we wish
to improve on in future work. First, when users make mis-
takes or introduce contradictory examples, our system only
shows the synthesizer fails to find a satisfying program in the
progress bar. It is not able to recognize or pinpoint user mis-
takes. Second, even without any user mistakes, the synthesizer
may still fail to return anything to the user, if the given exam-
ples are too complicated to generalize or if a task is too hard
to solve within a given time budget. Our current system pro-
vides no affordance to debug these synthesis failures nor help
users understand which step or input it is stuck on. Finally,
the semantic augmentation feature currently only supports
specifying characters as literal values or general classes of
characters. Hence, it is cumbersome to handle string matching
tasks with sophisticated character ordering constraints and
length constrains, such as the UK phone number example in
Section 8. Though the divide-and-conquer strategy is proven
to be a feasible workaround, extending semantic augmentation
to express richer semantics such as temporal ordering and
input length is probably a more convenient option for users.

Multi-modal synthesis is another active research direction
to resolve intent ambiguity in user-given examples. Several
systems have been proposed to support multi-modal specifi-
cations such as natural language descriptions [7] and verbal
instructions [38, 36, 37] in addition to examples. Investigating
possible augmentations on these other types of specifications
is an interesting direction to pursue in the future.

CONCLUSION
This paper presents a new interaction model that operates
on user-provided examples to guide program synthesis. We
demonstrate its feasibility and effectiveness in the domain of
regular expressions by (1) building an interactive synthesizer
for regular expressions, (2) conducting a within-subjects lab
study with 12 participants on realistic regex tasks from Stack
Overflow, and (3) conducting a case study on another 20 com-
plex regex tasks from Stack Overflow. In the end, we discuss
the generalizability of this interaction model and what kinds
of adaptations are needed to apply it to other domains such as
code transformation synthesis and grammar synthesis.
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