
MIWA: Mixed-Initiative Web Automation for Beter User Control 
and Confidence 

Weihao Chen Xiaoyu Liu Jiacheng Zhang 
chen4129@purdue.edu dawnsqrl@umich.edu jiache@umich.edu 
Purdue University University of Michigan University of Michigan 

West Lafayette, Indiana, USA Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA 

Ian Iong Lam Zhicheng Huang Rui Dong 
iinicole@umich.edu skyhuang@umich.edu ruidong@umich.edu 

University of Michigan University of Michigan University of Michigan 
Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA Ann Arbor, Michigan, USA 

Xinyu Wang Tianyi Zhang 
xwangsd@umich.edu tianyi@purdue.edu 
University of Michigan Purdue University 

Ann Arbor, Michigan, USA West Lafayette, Indiana, USA 

Scrape Text

TITLE

CONTENT

a. Scrape

b. Scrape

Find a list of 
(hover to see the matched elements in 
the target website), For each element, 

MATCHED ELEMENTS

Timestamp Activity Action

03:01:01

03:01:02

03:01:04

03:01:05

03:01:10

scrape A

scrape B

click C

click next page

go back

 Demonstrate on a target website 2. Understand and validate the 

    automation script

3. Edit demonstration trace

evaluation evaluation

executionexecution

Figure 1: Given the user’s demonstration on a target website, MIWA synthesizes an automation script as well as a step-by-step 
explanation of the script’s behavior. Users can easily understand the synthesized script by reading the natural language (NL) 
description. When users hover over an entity (e.g., a column name) in the NL description, the corresponding elements on the 
target website are highlighted to help users see the visual correspondence between the NL description and the web elements. 
Users can further validate the correctness of each step in the automation script via a step-through debugging feature. If an 
error is identifed, users can undo, redo, or edit previous demonstrations to refne the script. 

ABSTRACT 
In the era of Big Data, web automation is frequently used by data 
scientists, domain experts, and programmers to complete time-
consuming data collection tasks. However, developing web automa-
tion scripts requires familiarity with a programming language and 
HTML, which remains a key learning barrier for non-expert users. 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0132-0/23/10. 
https://doi.org/10.1145/3586183.3606720 

We provide MIWA, a mixed-initiative web automation system that 
enables users to create web automation scripts by demonstrating 
what content they want from the targeted websites. Compared to ex-
isting web automation tools, MIWA helps users better understand a 
generated script and build trust in it by (1) providing a step-by-step 
explanation of the script’s behavior with visual correspondence to 
the target website, (2) supporting greater autonomy and control 
over web automation via step-through debugging and fne-grained 
demonstration refnement, and (3) automatically detecting potential 
corner cases that are handled improperly by the generated script. 
We conducted a within-subjects user study with 24 participants and 
compared MIWA with Rousillon, a state-of-the-art web automation 
tool. Results showed that, compared to Rousillon, MIWA reduced 

https://orcid.org/0009-0003-9108-8473
https://orcid.org/0009-0005-3441-1347
https://orcid.org/0009-0006-0513-7403
https://orcid.org/0000-0003-4890-3236
https://orcid.org/0000-0003-0143-8613
https://orcid.org/0000-0002-2757-2768
https://orcid.org/0000-0002-1836-0202
https://orcid.org/0000-0002-5468-9347
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606720
mailto:tianyi@purdue.edu
mailto:xwangsd@umich.edu


UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Chen et al. 

the task completion time by half while helping participants gain 
more confdence in the generated script. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Web-based interaction; Interaction design; Sys-
tems and tools for interaction design. 

KEYWORDS 
Programming by Demonstration, Web Automation, Data Science 

ACM Reference Format: 
Weihao Chen, Xiaoyu Liu, Jiacheng Zhang, Ian Iong Lam, Zhicheng Huang, 
Rui Dong, Xinyu Wang, and Tianyi Zhang. 2023. MIWA: Mixed-Initiative 
Web Automation for Better User Control and Confdence. In The 36th An-
nual ACM Symposium on User Interface Software and Technology (UIST ’23), 
October 29–November 01, 2023, San Francisco, CA, USA. ACM, New York, NY, 
USA, 15 pages. https://doi.org/10.1145/3586183.3606720 

1 INTRODUCTION 
In the era of Big Data, data scientists, domain experts, and program-
mers collect data to construct data-driven applications [20, 24, 63]. 
For example, social scientists rely heavily on web data (e.g., tweets, 
forum posts) to gain insights into social behavior, opinion develop-
ment, and cultural preferences [12, 43]. To gather such web data, 
they need to create a web automation script [16], since manual 
data collection is time-consuming and prone to human errors [13]. 
However, implementing web automation scripts requires users to 
understand web browser events and reverse-engineer target web-
sites [16]. Additionally, they should be profcient in web program-
ming languages (e.g., HTML, DOM, and JavaScript), as well as web 
automation libraries such as Selenium [9], Scrapy [8], Beautiful 
Soup [1], and MechanicalSoup [6]. 

Programming by Demonstration (PBD) is a promising solution 
for web automation without requiring web programming skills [32]. 
Though many PBD systems [4, 10, 16, 17, 35, 36, 40, 41] have been 
proposed for web automation, existing systems provide limited 
support for helping users understand, validate, and build confdence 
on the generated scripts. As shown by Krosnick and Oney [29], users 
desire to receive more live feedback when debugging their scripts. 
Furthermore, in case of errors, users have no choice but to restart 
from scratch, since current PBD systems only support one-shot 
synthesis. There is a lack of efective mechanisms for discovering, 
diagnosing, and repairing errors in the generated scripts. 

To address these limitations, we present MIWA, a mixed-initiative 
system that facilitates the comprehension, validation, and refne-
ment of web automation scripts with increased user control and 
autonomy. To help users understand and validate a generated script, 
we develop a grammar-based method that generates a step-by-step 
description of the script’s behavior in natural language (NL). To 
improve the readability of the NL description, MIWA further aug-
ments the description with visual correspondence between entities 
mentioned in the description and UI elements on the target website. 
Users can validate the script’s behavior by inspecting the inter-
mediate result of each web automation step via a step-through 
debugging feature. If the NL description is not aligned with the 
user’s intent, they can further demonstrate more actions or modify 

previous actions in the demonstration trace without the need to 
start over. To speed up the synthesis efciency, MIWA leverages a 
novel incremental synthesis method to monitor user actions and 
continuously refne the script from previous checkpoints instead 
of re-synthesizing from scratch. Finally, when MIWA encounters 
non-existing or incorrectly formatted data, it immediately prompts 
users with an alert and solicits fxes to avoid processing more data 
incorrectly. 

We conducted a within-subjects user study with 24 participants 
to evaluate the usability and efciency of MIWA. Participants using 
MIWA fnished the assigned tasks in only 3 minutes and 58 seconds 
on average, reducing the task completion time by 55% compared 
with using Rousillon [16]. In the post-task survey, participants felt 
more confdent about the generated scripts when using MIWA— 
( 5.58 vs. 6.50, unpaired t-test: p=.00189 ) on average on a 7-point 
scale. These results imply that MIWA can indeed improve users’ pro-
ductivity and confdence in web automation. Besides, we conducted 
a qualitative experiment on 29 additional tasks to demonstrate the 
efectiveness and generalizability of MIWA. The average task com-
pletion time is 2 minutes and 50 seconds, with a success rate of 74%. 
This provides quantitative evidence about MIWA’s efectiveness on 
a variety of web automation tasks. 

Overall, this work makes the following contributions: 

• MIWA, a mixed-initiative interaction system that enables 
users to build web automation scripts with better user control 
and confdence. 

• A within-subjects user study demonstrating the usability 
and efcacy of MIWA in comparison to a state-of-the-art 
tool called Rousillon. 

• A quantitative experiment on 29 web automation tasks demon-
strating the efectiveness and generalizability of MIWA. 

2 RELATED WORK 

2.1 Web Automation 
Web automation is a widely adopted technique that uses software 
scripts to automate tedious and error-prone web-related tasks, such 
as flling in web forms and collecting data from websites. For in-
stance, social scientists may need to write web automation scripts 
in order to collect data from various sources, such as social media 
networks like Reddit and Twitter [65]. Investors may use automa-
tion to collect stock data in order to monitor and analyze market 
trends [31]. Web automation is also used to perform other domain-
specifc tasks, such as gathering a large amount of training data 
to curate machine learning models and automatically testing UI 
components [28, 62]. 

However, implementing web automation scripts is a difcult 
and complex endeavor. It requires expertise in HTML/DOM, CSS, 
programming, and computational thinking. Krosnick and Oney 
[29] identify a list of key challenges for developing web automation 
scripts. They fnd that even for seasoned programmers, it takes a 
considerable amount of time to understand the web structure, its 
contents, and the behavior of UI elements before they can start 
writing code to interact with the websites. 

Several techniques and tools have been developed to reduce the 
technical barrier for authoring web automation scripts. For example, 

https://doi.org/10.1145/3586183.3606720


MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

Selenium [9], Puppeteer [7], and Cypress [3] are three commercial 
tools that use record-and-replay to reproduce user actions. However, 
these techniques are not capable of generalizing beyond what has 
been demonstrated. In other words, the scripts generated by these 
techniques only replay the user actions but cannot be applied to 
similar elements on a target website. Thus, they still require a 
considerable amount of manual efort to edit the generated scripts to 
generalize beyond user demonstrations. CoScripter [36] (formerly 
Koala [41]) records user demonstrations as pseudo-natural language 
scripts and leverages sloppy programming to interpret the scripts. 
It only supports limited generalization, e.g., replacing a literal value 
with a variable if it appears in a database. More recent tools [14– 
17, 21, 29, 52, 53] use advanced program synthesis algorithms to 
generate web automation scripts with variables and loops, which 
can generalize beyond user demonstrations and apply to similar 
elements on the same website across multiple pages. We describe 
these techniques in the next section. 

2.2 Programming-by-Demonstration (PBD) 
Programming-by-Demonstration (PBD) is a class of program syn-
thesis techniques that automatically generate programs from user 
demonstrations. PBD techniques have shown success in lowering 
the technical barrier and making programming accessible to non-
programmers [16, 19, 23, 33, 37–40, 44, 46, 47, 51]. For example, one 
of the earliest PBD techniques, Pedriot [50], allows users to create 
UI components (e.g., menus and scroll bars) by demonstrating how 
they would create them manually. 

The most related to us are PBD systems for web automation [14– 
17, 21, 29, 52, 53]. Given a sequence of user actions on a website, 
these techniques automatically generate scripts that repeat the same 
actions and can also apply them to similar elements in the website. 
Some PBD tools [22, 35, 64] can only generate web automation 
scripts with one-level loops but not nested loops, which limits their 
capability to automate complex actions. To address this limitation, 
Chasins et al. proposed Rousillon [16]. Furthermore, to improve 
the readability of generated scripts, Rousillon adopts the visual 
syntax of Scratch [55] to render the generated scripts. While the 
Scratch-style visualization makes it easier to read a script, it still 
requires users to know programming basics, such as loops and 
variables, to understand and edit the script. Furthermore, Rousillon 
assigns some mechanically generated names such as row_1 and 
list_2 in a script, which are hard to interpret. Dong et al. [17] 
recently presented a new PBB algorithm called WebRobot that 
leverages speculative rewriting to generate web automation scripts 
with nested loops. WebRobot allows users to execute a generated 
script and continuously provide more demonstrations to refne it. 
However, it does not render the generated script to users or provide 
a description of the script’s behavior. Therefore, it is hard for users 
to validate the script other than running the script on the entire 
website and manually checking the scraped result. 

Compared to previous work, our main focus is to design inter-
action mechanisms that promote user trust and control over web 
automation scripts. Specifcally, our system provides a step-by-step 
description of a generated script and allows users to execute each 
step one by one to validate its behavior. Our user study results show 

that these mechanisms signifcantly reduce task completion time 
and improve user confdence compared to Rousillon [16]. 

2.3 Interactive Support in Existing PBD Systems 
Existing PBD systems adopt various interaction mechanisms to 
improve the usability of PBD. For instance, Krosnick and Oney 
recently proposed a tool to allow users to specify which parts of 
a natural language query can be generalized, in addition to pro-
viding demonstration traces [30]. This helps PBD systems better 
reduce ambiguity in user demonstrations. Such multimodal spec-
ifcations have also been adopted by other PBD systems [23, 37– 
39, 49]. PUMICE [39], APPINITE [38], and SUGILITE [37] allow 
users to resolve ambiguities and vagueness in a task description via 
both conversations and demonstrations. Topaz [49] allows users to 
specify which parts of a demonstration can be generalized by point-
ing to the objects that should be generalized. Vegemite [40] uses 
both demonstrations and direct manipulations to populate tables 
with information collected from diferent websites. HILC [23] asks 
users to answer some follow-up questions after a demonstration to 
help clarify the confusing parts in the demonstration. 

The interaction mechanisms most related to our work are tools 
designed to promote user trust and confdence in PBD [16, 36, 42, 
47]. As Tessa Lau wrote in her refection on why PBD fails [34], PBD 
systems should “encourage trust by presenting a user-friendly model.” 
Visual programming promotes user understanding and trust by pro-
viding live feedback to users [61]. For instance, VIVA [61] renders 
an image processing script as an executable fowchart and provides 
live feedback at four diferent levels. Similarly, Rousillon [16] ren-
ders a web automation script in a block-based visual language [55]. 
Pursuit [47] renders the generated program in a comic strip style. In 
this work, we choose to use natural language rather than a graphical 
representation to help users understand a program, since we fnd 
natural language more suitable and straightforward for describing 
actions on a webpage, without requiring graphic literacy. 

Similar to our work, both CoScripter [36] and FlashProg [42] 
translate a generated program into pseudo-natural language. How-
ever, CoScripter [36] only performs a verbatim translation of indi-
vidual user actions in a demonstration trace and does not handle 
complex program structures like loops. FlashProg [42] uses tem-
plates and idiom paraphrasing rules to translate synthesized regular 
expressions. Compared with regular expressions, web automation 
scripts are more complex, with variables and loops to explain. MIWA 
adopts a grammar-based method to systematically translate difer-
ent parts of a program based on its abstract syntax tree, instead of 
only relying on heuristics. Additionally, MIWA not only generates 
a plain text description for a program but also renders the visual 
correspondence between elements mentioned in a program and the 
elements in a target website. 

The design of fne-grained control features in MIWA is highly 
motivated by the idea of direct manipulation [57, 58]. Direct ma-
nipulation has been widely adopted in diferent domains, such as 
content creation [11, 25, 26], visual programming [48, 55], and data 
visualization [27, 60]. Rousillon [16] also supports direct manipu-
lation by rendering the generated scripts in a block-based visual 
language and allowing users to edit them directly. However, we 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Chen et al. 

found that such a visual language still requires some basic under-
standing of programming, such as understanding variables, loops, 
and type compatibility. MIWA addresses this limitation by allowing 
users to edit demonstration traces rather than generated scripts. 
Once a demonstration is refned, MIWA will automatically update 
the underlying script accordingly. 

D-Macs [45] is another work highly related to MIWA. D-Macs 
supports record-and-replay for multi-device UI design with similar 
features, such as visualizing the demonstration trace and handling 
potential errors. The main diference between MIWA and D-Macs 
is that MIWA can produce a natural language explanation of the 
synthesized script in a step-by-step manner. This feature helps 
users comprehend and debug the script. Additionally, the error 
handling mechanism in MIWA focuses on data anomalies, while 
D-Macs focuses on checking whether an action is applicable to a 
new device, as its goal is multi-device UI design. 

3 DESIGN GOALS AND SYSTEM OVERVIEW 
We reviewed previous studies [16, 21, 29, 34] that have conducted 
user studies of web automation tools or discussed the usability 
challenges of web automation. Based on the common issues and 
challenges, we summarized the design goals for MIWA and elabo-
rated on the rationale for each goal below. 

D1. Help users understand the generated script. Several 
studies have shown that users wish to have a better way of under-
standing the script generated by a web automation tool [16, 21, 34]. 
For example, Chasins et al. [16] showed that participants appreci-
ated having a more readable language in Rousillon compared to a 
low-level script language in Selenium. In another article [34] that 
refects the lessons learned from deploying PBD systems, including 
CoScripter [36], Tessa Lau reported that many PBD systems were 
not adopted since users cannot grasp the arcane syntax of gen-
erated programs. This difculty refrains users from fully trusting 
generated programs. 

These fndings motivate us to design the grammar-based trans-
lation method to explain a generated script in natural language 
(Section 5.2). Compared to other kinds of program representations, 
such as a visual language [55], natural language can be more easily 
understood by humans with little requirement for graph literacy. 

D2. Provide live feedback. Krosnick and Oney [29] found 
that users of web automation tools wish to have live feedback to 
understand the web automation process and discover problems. 
Specifcally, users want to see which HTML elements are matched 
by a CSS selector (i.e., XPath) in a script. They also want to see the 
intermediate outcome of each step of the execution to understand 
whether the correct elements are selected, whether the expected 
behavior occurs, and whether there are any errors. 

This motivates us to design two interactive features in MIWA. 
First, MIWA allows users to hover over an entity in a NL explanation 
to see the visual correspondence between the entity and the HTML 
elements matched by the CSS selector of the entity (Section 5.2). 
Second, MIWA supports step-through debugging, a well-established 
feature in programming IDEs, to help users pause program exe-
cution and inspect the intermediate result of each statement in a 
script (Section 5.3). 

D3. Help users detect potential errors. Chasins et al. [16] 
pointed out that many Selenium users had concerns about the 
robustness of web automation scripts. Lau [34] also showed that 
CoScripter [36] was likely to crash in the middle of execution, as 
it relied on heuristics rather than formal syntax for parsing. She 
found that users became confused and had no choice but to restart 
the task. Thus, Lau suggested that PBD systems should help users 
detect potential errors and fail gracefully. Krosnick and Oney [29] 
summarized several root causes for web automation errors, such as 
HTML/CSS element inconsistencies across pages, learning a CSS 
selector that is too general or too specifc, etc. 

Inspired by these fndings, we designed an anomaly detection 
feature that proactively detects common data anomalies in web 
automation (Section 5.4). Furthermore, the step-through debugging 
feature (Section 5.3) can help users accurately locate which step of 
the execution leads to an error and make targeted corrections. 

D4. Make it easier to make corrections. Several studies have 
found that users wish to have more convenient ways to fx errors 
in the scripts generated by a PBD system [16, 21, 34]. In PBD, the 
default error-fxing mechanism is to provide new demonstration 
traces. However, this is not efcient, especially for errors that re-
quire a small change, since users have to demonstrate from the 
very beginning [34]. While some tools, such as Selenium, allow 
users to directly edit the generated script to fx an error, they also 
introduce a steep learning curve, since users need to be familiar 
with the script language to make the correction. 

The user study by Chasins et al. [16] confrms that participants 
using Selenium complained about the challenges of interacting with 
a low-level script language. Rousillon [16] addresses this challenge 
by rendering scripts in a block-based visual language. However, we 
found that this visual language still required a basic understanding 
of program constructs, such as variables and loops, and the visual-
ization can be overwhelming for complex scripts. Thus, we chose 
to allow users to edit individual actions in a demonstration trace 
rather than the underlying script to fx an error (Section 5.3). MIWA 
will automatically update the script based on the refned trace. 

4 USAGE SCENARIO 
Suppose Alice is a social scientist who wants to gather data from the 
Subway website in order to analyze the distribution of local Subway 
stores and its relation to the poverty of neighborhoods. Without 
any tool support, Alice needs to go to the Subway website, enter 
a zip code, and manually copy and paste the information of each 
nearby Subway store in the search result. She has to repeat these 
steps for all neighborhoods she cares about. This is time-consuming 
and error-prone. Since Alice is not familiar with web programming, 
she does not know how to write a script to automate this process. 
Therefore, Alice decides to use MIWA to automatically generate 
the web automation script she needs. 

Alice’s task is to collect the phone numbers, hyperlinks, and ad-
dresses of local Subway stores in diferent neighborhoods. She has 
curated a spreadsheet with a list of zip codes for the neighborhoods 
of interest. Alice uploads this spreadsheet to MIWA, which is ren-
dered in an input table in Figure 2○a . Then, Alice drags the frst zip 
code and drops it into the search box of the target website. After the 
search results are returned, she right-clicks on the phone number of 



MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

a b

d
c

h

g

e f

Target Website: Subway.comMIWA control panel

Figure 2: The user interface of MIWA. In addition to scraping data (○b and ○g ), users can fll out a text feld (e.g., a search bar) 
on a target website by dragging values from a csv fle uploaded to MIWA (○a ). MIWA provides a step-by-step explanation of the 
synthesized script with visual correspondence to the UI elements in the target website (○d and ○h ). Users can validate the script 
behavior and inspect intermediate automation results through a step-by-step debugging feature (○e ). If users spot any error, 
they can refne the demonstration trace by editing previous actions or demonstrating new actions (○c ). In the end, users can 
scrape the data all at once by clicking the AUTO-SCRAPE button (○f ). 

the frst Subway store and selects the “Scrape Text” option (Figure 
2○g ). Now she can see that the phone number has been scraped 
and put into the output table (Figure 2○b ). The activity trace in 
Figure 2○c is also updated with an action description—“Scrape text 
of 206-625-4342.” Alice confrms that her action has been recorded 
correctly. She then proceeds to scrape the hyperlink and address 
of the store. During the demonstration, she mistakenly scrapes the 
distance information (0.2 mi) as part of the store address. MIWA 
soon detects a wrong format and displays a potential error alert 
(Figure 6○d ) to her (D3). To fx this mistake, Alice clicks the edit 
button (Figure 2○c ) in the activity trace and redoes this action (D4). 

After Alice scrapes the data for two Subway stores, she notices 
that the synthesizer has generated a web automation script. She 
quickly understands the natural language description of this script 
(D1), as shown in Figure 2○d ). 

When Alice hovers over the column name “PHONE” (Figure 2○d ), 
all the phone numbers on the target website are then highlighted 
(Figure 2○h ). This visual correspondence helps Alice confrm that 
MIWA’s understanding of PHONE is aligned with her expectation 
(D2). To double check whether this script behaves correctly (D2), 
she clicks the SCRAPE NEXT button several times and confrms 
that the next few elements are scraped correctly (Figure 2○e ). Alice 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

is satisfed with the script, so she clicks the AUTO-SCRAPE button 
(Figure 2○f ). 

MIWA scrapes all remaining data on the frst page and then 
prompts Alice that the scraping is done (Figure 6○a ). Alice realizes 
that this script only scrapes data on the frst page and does not 
know how to move to the next page (D3). So Alice continues to 
demonstrate by clicking the Next Page button and scraping the data 
for the frst Subway store on the second page. After demonstrating, 
MIWA generates a new script with the following description: 

Step 1. Find a list of MATCHED ELEMENTS (hover to see the 
matched elements on the target page) For each element, 

a. Get the text of PHONE 
b. Get the text of LINK 
c. Get the text of ADDRESS 

Step 2. Click NEXT PAGE 
Step 3. Repeat the previous step(s) 

Alice confrms that this script can automatically click the Next 
Page button and scrap data for all pages. Alice clicks the AUTO-
SCRAPE button again. The script successfully iterates over all pages 
and scrapes all the data. 

Now Alice wants to scrape the data from a diferent neighbor-
hood. She drags the second zip code from the input table in Figure 
2○a and repeats the same demonstration again. This time, MIWA 
generates a new program with the following description: 

Step 1. Find a list of Zip Code from the input fle. For each Zip 
Code, 

a. Enter Zip Code to SEARCH BOX 
b. Click SEARCH 
c. Find a list of MATCHED ELEMENTS (hover to see the 

matched elements on the target page). For each element, 
c1. Get the text of PHONE 
c2. Get the text of LINK 
c3. Get the text of ADDRESS 

d. Click NEXT PAGE 
e. Repeat the previous step(s) 

Alice clicks the AUTO-SCRAPE button again. MIWA then scrapes 
all remaining data for the second neighborhood and iterate over 
the remaining neighborhoods listed in the input table in Figure 2○a . 
In this way, Alice gathers all the data she needs for the analysis, 
without writing a single line of code. 

5 SYSTEM IMPLEMENTATION 
Figure 3 shows the system architecture of MIWA. MIWA includes 
three components: (1) a React UI that renders the input data, the 
scraped data, the demonstration trace, and the NL explanation; (2) a 
browser extension that records user demonstrations and highlights 
web elements mentioned in the NL explanation; (3) a back-end 
server that runs the PBD algorithm and detects potential anomalies. 
This section describes the key features of these components. 

Chen et al. 

Browser Extension

React UI Back-end

DOM

Scraper

Element 
Highlighter

Data Input

Interface

Step-through

Debugging

Demonstration

 Trace

NL

Explanation

Automation

Synthesis

Invalid

Action

Empty

Data

Inconsistent

Data Format

Duplicate

Action

Anomaly Detector

Figure 3: The system architecture of MIWA 

5.1 Synthesizing Web Automation Scripts 
MIWA leverages a state-of-the-art synthesis algorithm [17] to auto-
matically generate web automation scripts from user-demonstrated 
actions. We briefy describe the synthesizer here and refer inter-
ested readers to [17] for details. The synthesizer takes two inputs: 
(1) user demonstration in the form of a trace of actions and (2) 
input data in the form of a JSON or CSV fle. The input data is op-
tional, but it is typically needed for form-flling tasks (e.g., entering 
search keywords on an online shopping website). The synthesizer 
returns a web automation script that repeats the steps in the user 
demonstration and continues to perform more actions on similar 
web elements. 

Program � ::= � ; · ·; � 

Statement � ::= 

| 
Click(�) | ScrapeText(�) | ScrapeLink(�) 
GoBack | SendData(�, � ) | SendKeys(�, � ) 

| ForEach � in � do � 

DOMNodes � 

| 
|

::= 

ForEach � in � do � 

While true do {� ; Click(�) } 
a list of DOM Nodes expressed in XPath 

EntryData � ::= a list of user-provided input data 

Figure 4: The DSL for Web Automation [17] 

The synthesizer can generate web automation scripts with rich 
structures and operations, as defned in the domain-specifc lan-
guage (DSL) in Figure 4. It supports various operations, e.g., clicking 
a button on the webpage, scraping text or URL, going back to the 
previous page, and entering data in a text feld on a webpage. Note 
that the data may either come from an input fle (i.e., SendData) or 
a constant string typed in by the user (i.e., SendKeys). The program 
locates a DOM node � on the webpage using standard XPath se-
lectors. The DSL can express three types of loops. The frst kind 



MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

Statements Translation rules Examples 

Click � “Click” + Text(� ) “Click next page” 

ScrapeText � “Get the text of ” + Column_name(� ) “Get the text of phone number” 

ScrapeLink � “Get the link of ” + Column_name(� ) “Get the link of store” 

GoBack “Return to the previous page” “Return to the previous page” 

SendKeys � � “Enter” + Text(� ) + “to” +Text(� ) “Enter Iphone 12 to input box” 

SendData v0 � “Send an input to” + Text(� ) “Send an input to search box” 

ForEach v0 in � “Find a list of matched elements (hover to see the matched “Find a list of matched elements (hover to see the matched 

elements in the target webpage). For each element,” + elements in the target webpage). For each element, get the 

Translate(statement.body) text of phone number 

While “Repeat the previous step(s)” “Repeat the previous step(s)” 

Table 1: Translation rules for web automation scripts 

of loop iterates over a list � of DOM nodes on the webpage. This 
is typically used for scraping a list of items (e.g., loop over a list 
of Amazon products on a webpage and extract the price for each 
product). The next loop type supports iteration over a list � of 
entries in the input data, where its loop body takes each entry � to 
fll some feld on the webpage. Finally, the while loop repeatedly 
clicks the “next page” button (located by �) and performs actions 
on each page using � . 

We extended the original synthesis algorithm to support fne-
grained user control in MIWA, e.g., adding or deleting an action in 
the middle of the trace. The original algorithm assumes that new 
actions can only be appended to the end of the trace. Thus, any edits 
to the demonstration trace will lead to a re-synthesis from scratch. 
To improve the efciency of synthesizing from updated traces, we 
introduced a new incremental synthesis algorithm with caching. It 
caches the worklist of program candidates during synthesis. When 
the user edits an action in the middle of the demonstration trace, 
the syntheser retrieves the prior state from the cache and continues 
synthesis from that point instead of starting from scratch. This 
algorithm greatly improves synthesis efciency. 

5.2 Natural Language Explanation 
Prior work [36, 42] generates NL explanations for programs based 
on pattern substitution and templates. Thus, they cannot handle 
arbitrarily complex programs in the wild. To address this limita-
tion, we propose a new grammar-based method that systematically 
generates NL explanations by decomposing a script based on its 
abstract syntax tree (AST) and translating each statement based on 
a set of composable rules. This divide-and-conquer mechanism al-
lows our method to handle arbitrarily complex programs, including 
those with nested loops. We describe the details below. 
Step-by-Step Natural Language Description: Given a web au-
tomation script, our method frst parses it into an Abstract Syntax 
Tree (AST) and identifes diferent kinds of program statements 
in it. Then, our method sequentially translates each statement to 
generate the full explanation. Specifcally, we design translation 
rules for each type of program statement in the DSL, as shown 
in Table 1. For instance, given a statement Click � in a script, 

MIWA translates the statement based on a text template—“Click” 
+ Text(� ). In this template, Text(� ) is a auxiliary function that 
takes an XPath � as input and returns the text value of the HTML 
element selected by � . If the XPath points to a button with the text 
“Next Page”, then Text(� ) will return “Next Page” to compose the 
fnal string—“Click Next Page”. 

Another auxiliary function used by our translation method is 
Column_name(� ). This function is used to translate the ScrapeText 
and ScrapeLink statements in a script, as shown in Table 1. Unlike 
the Text function, Column_name is hard to be resolved directly from 
the corresponding HTML elements specifed by the XPath � , since 
the HTML elements typically contain concrete values to be scraped 
instead of a high-level description. To address this challenge, MIWA 
leverages user-provided column names in the output table as the 
description of the scraped data in the column. Given an XPath � , 
this function tracks which column the scraped data of this XPath is 
placed to in the output table and retrieves the column name. 

Finally, for structured program statements such as loops, our 
method recursively translates the inner statements to their natural 
language descriptions and composes them together based on the 
translation rules. 
Visual Correspondence: To enhance the readability of generated 
NL descriptions, we use XPath to establish a visual correspondence 
between the description and elements on the target website (D2). 
Specifcally, the XPath of an entity mentioned in a program state-
ment is used to create a listener and a clickable link in the React 
UI. When hovering over these links, the extension will use the 
XPath to locate and highlight the corresponding target to provide 
live feedback. Unlike a previous approach [16], which highlights 
web elements to help users identify scrapable elements, our feature 
serves a diferent purpose—helping users recognize the correspon-
dence between entities in the NL description and elements in the target 
website. This is critical, since some entities may be described using 
terminologies that users are not familiar with and some elements 
may be ambiguous due to similar elements in the target website. 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Chen et al. 

 Click Step-Through button 

2. Validate the result 

3. Fine-Grained Editing 

a

c

b

Figure 5: In step-through debugging, a cursor is displayed 
next to the statement under execution (Figure 5○a ). After 
users click the “Scrape Next”next button, the corresponding 
elements on the target website will be highlighted to help 
users validate the program (Figure 5○b ). Users can further 
refne the script by undoing, redoing, or editing the demon-
stration trace (Figure 5○c ). MIWA will generate a new script 
based on the new demonstration trace. 

5.3 Supporting Fine-grained Control 
MIWA allows users to validate a generated script with intermediate 
feedback on each step of execution (D2) and to refne the script to 
fx errors (D4). This is supported by the following two features. 
Step-through Debugging for Quick Validation and Diagno-
sis: First, MIWA supports step-through debugging to help users 
accurately identify which step introduces an error while inspecting 
the intermediate execution results (Figure 5○a ). Specifcally, a user 
can click on the “SCRAPE NEXT” button to scrape one item at a 
time. The corresponding elements will be highlighted to help users 
validate the script (Figure 5○b ). To implement this feature, we ex-
tended the script interpreter to introduce a debug mode, where the 

interpreter executes a single statement at a time and waits for the 
signal from the front-end interface to execute the next statement. 
Undo, redo and edit demonstration traces. MIWA allows users 
to undo, redo, or edit an action in the demonstration trace to refne 
their demonstrations or fx a demonstration mistake (Figure 5○c ). 
MIWA will then regenerate the script based on the updated demon-
stration trace. By reading the NL description of the newly generated 
script, users can quickly decide whether the refnement is efec-
tive or not. This Demo-Check-Edit procedure will continue until a 
desired script is generated. 

5.4 Anomaly detection 
A web automation script may encounter various issues, such as 
missing values, due to inconsistent web design and unhandled 
corner cases. Therefore, MIWA employs a set of heuristics to con-
stantly monitor and detect anomalous data during web automation 
(D3). These heuristics are designed based on 29 real-world web 
automation tasks found in an online forum for web automation, 
iMacros [5]. These tasks are detailed in Section 8. Overall, MIWA 
detects four types of data anomalies: 

• Type I (Invalid action): The web element to scrape or a text 
feld to fll in does not exist on the target website. 

• Type II (Duplicate action): The web element to scrape is 
identical to the last scraped data. 

• Type III (Empty data): The web element to scrape exists but 
does not contain any content, e.g., text, link. 

• Type IV (Inconsistent data format): The format of the data 
to scrape is inconsistent with other data in the same column 
in the output table. 

Specifcally, to check data format consistency, we design a set of 
regular expressions to infer the data format, as shown in Table 2. 
These regular expressions are deliberately designed so that data 
instances in diferent formats will match at most one regular expres-
sion, except for the String format, which is the default format for 
all data. For instance, a string “https://www.subway.com” will only 
match the Link format, in addition to the default String format. 

Data Type Regular Expression Rules Examples 

String ^.+$ Any non-empty string 

Text ^[\d\sA-Za-z,.;:\/\-"’?!∼&()\[\]]+$ Cambridge, MA 02143, USA 

Number ^(?![\s,.+\-]*$)(?:|[+\-])[\d\s,]* -20.0% 

\d(?:|[,.][\d\s]+)(?:|%)$ 

Link ^http(?:|s):\/{2}\S+$ https://www.subway.com 

Email ^\S+@\S+$ example@domain.com 

Date ^(?:\d{1,2}|\d{4})([.\/\-])\d{1,2} 2022/8/31 

\1(?:\d{1,2}|\d{4})$ 

Money ^[$€£]\s*(?![\s,.]*$)[\d\s,]*\d $4.02 

(?:|[,.][\d\s]+)$ 

Phone ^(?!\d{10})(?:|(?:|\+)\d{1,3})(?:|[\s-]) (765) 838-0054 

(?:(\d{3})|\d{3})(?:|[\s-])\d{3}(?:|[\s-])\ 
d{4}$ 

Table 2: Regular expressions to infer data format. 

mailto:example@domain.com
https://www.subway.com
https://www.subway.com


MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

a

b

c

d

Figure 6: Diferent types of anomaly alerts. 

When a data anomaly is detected, a prompt will be displayed to 
inform the user. For Type I anomalies, the user can either end the 
scraping session right away or continue demonstrating manually 
through the pop-up dialog, as shown in Figure 6○a . For Type II, III, 
and IV anomalies, a non-obstructive alert will be displayed next 
to the scraped data table for the user’s reference when correcting 
previous actions, as shown in Figure 6○b , ○c , and ○d . 

6 USER STUDY 
To evaluate the usefulness and usability of MIWA, we conducted a 
within-subjects user study with 24 participants who have diferent 
levels of programming experience. We chose Rousillon [16], a state-
of-the-art web automation system, as a comparison baseline. 

6.1 Participants 
We envision that MIWA will not only be helpful for non-experts 
but also improve the productivity of experienced programmers by 
eliminating the need to manually write code. Thus, in the user 
study, we recruited participants with diferent levels of expertise in 
web automation. Specifcally, we recruited 24 students (6 female, 
17 male, 1 non-binary) from the Computer Science department at 
Purdue University via the department mailing list. 14 participants 
said they had written web automation scripts before, while 10 
participants had no experience with web automation. Furthermore, 
12 participants had more than 5 years of programming experience, 
10 had 2 to 5 years, and 2 had only 1 year. As compensation for their 
participation, each participant received a $25 Amazon gift card. 

6.2 Tasks 
We selected three tasks with diferent levels of difculty from an 
existing benchmark [17]. This benchmark consists of real-world 
web automation tasks from the iMacros forum [5]. The frst task is 
considered easy to solve, and both tools can solve it quickly in one 
iteration. The second task involves multi-page scraping, requiring 
users to demonstrate how to navigate to the next page. The third 
task is considered the hardest, since it requires entering search 

keywords from a given input fle and repeatedly scraping data for 
diferent search results. Each task is described below. 
Task 1 (Scrape Stock Prices): Open https://fnance.yahoo.com/most-
active, a fnancial website that records various company names, 
stock prices, and changes. You must scrape the contents of the 
columns Name, Price, and Change for the 25 most active stocks. 
Task 2 (Scrape Nearby Garages): Open the garage fnder website 
at https://www.themotorombudsman.org/garage-fnder. From this 
website, you will need to scrape each garage title, hyperlink, and 
the garage’s type on the frst page, then click the Next Page button 
and continue to scrape the data in the following pages. 
Task 3 (Scrape Attorney Information): Open https://apps.calbar.c 
a.gov/attorney/LicenseeSearch/QuickSearch, which is a govern-
ment website that allows users to search for attorneys. For this 
task, you need to scrape the attorney’s Number and City based on 
a given input fle that has a list of attorneys’ names. 

6.3 Protocols 
Each user study starts with an introduction and a consent solicita-
tion. Then, a participant was assigned two web automation tasks, 
one to be completed with MIWA and the other with Rousillon [16]. 
To mitigate the learning efect, both task and tool assignment orders 
were counterbalanced across participants. In total, 8 participants 
experienced each task in each condition. Before starting each task, 
participants watched a tutorial video of the assigned synthesizer 
and spent about 5 minutes becoming familiar with the tool. Then, 
they were given 20 minutes to complete the assigned task. A task 
was considered failed if participants did not reach a script that could 
correctly scrape all data after 20 minutes. 

After completing each task, participants flled out a post-task 
survey to give feedback. The post-task survey asked users what 
they liked or disliked about the assigned tool and what they wished 
they had. The survey also included a set of Likert-scale questions 
to ask users to rate the usefulness of key features in each assigned 
tool. To evaluate the cognitive load of using a tool, we included 
fve NASA Task Load Index questions [18] as part of the post-task 
survey. In the end, participants flled out a fnal survey where they 
directly compared the two tools. We recorded each user study with 
the participants’ permission. A study took an average of 53 minutes. 

7 RESULTS 

7.1 User Performance 
Table 3 shows the performance of the participants using MIWA 
versus Rousillon in terms of task completion time and attempts. 
Specifcally, we consider a participant to have made a “re-attempt” 
when they (1) submitted the wrong script to the experimenter 
or (2) started over from scratch again. When using MIWA, all 24 
participants successfully completed the assigned task. When using 
Rousillon [16], one participant failed to complete the task. 

For all three tasks, MIWA signifcantly reduced the task comple-
tion time. MIWA’s average task completion time is 3 minutes 58 
seconds, while Rousillon’s completion time is 8 minutes 44 seconds. 
The mean diference of 4 minutes 46 seconds is statistically signif-
icant ( unpaired t-test : t = 4.20551, df = 23, p = .00006 ). Even for 
the easy task, where both MIWA and Rousillon generate the correct 

https://a.gov/attorney/LicenseeSearch/QuickSearch
https://apps.calbar.c
https://www.themotorombudsman.org/garage-finder
https://finance.yahoo.com/most


UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Chen et al. 

Task 1 

MIWA Rousillon 

Task 2 

MIWA Rousillon 

Task 3 

MIWA Rousillon 

Overall 

MIWA Rousillon 

Completion Time 

# of Attempts 
# of Trace Refnement 

2:16 

1.25 

0.87 

4:16 

1.37 

-

4:45 

1.12 

2.5 

10:10 

2.37 

-

4:54 

1.62 

3.75 

11:47 

2.12 

-

3:58 

1.33 

2.37 

8:44 

1.95 

-

Table 3: The average task completion time and the average number of attempts made by participants. 

script in the frst round of synthesis, MIWA still saves the task 
completion time by almost half. Though we did not experiment 
with a manual programming condition, a previous user study [16] 
shows that participants took more than 50 minutes to complete 
a web automation task when using Selenium to manually write 
web automation scripts. This implies that MIWA can signifcantly 
improve user productivity compared with manual programming. 

When using MIWA, participants made an average of 1.33 at-
tempts, while they made an average of 1.95 attempts when us-
ing Rousillon. The mean diference of 0.62 is statistically signif-
cant ( unpaired t-test: p=0.003143 ). Participants made an average 
of 2.37 trace refnement actions to refne their script, e.g., undoing, 
redoing, and editing previous actions in the demonstration trace. 

To understand why MIWA helped participants save so much time, 
we manually analyzed the post-task survey responses and video 
recordings. First, we found that the NL description considerably 
accelerated the process of program comprehension. According to 
the recordings, all 24 participants relied heavily on the NL descrip-
tion to comprehend the generated script when using MIWA. P14 
stated, “The program description is very user friendly to understand.” 
P7 stated, “It has a simple GUI, ofers natural language descriptions 
and is also very intuitive as I can add elements in order and check 
them.” In the post-task survey, 20 participants agreed or highly 
agreed that NL descriptions helped them comprehend the synthesis 
code, as shown in Figure 9. In contrast, users of Rousillon spent 
more time comprehending the Scratch-like program representa-
tion. Participants using Rousillon also expressed less confdence on 
the generated scripts. P17 said, “It’s hard to understand. Using the 
graphical programming interface is not very diferent from writing 
programs. I need to spend lots of time on understand the components. 
When the scraping is complicated, it’s almost similar to read a pro-
gram.” P5 said, “Even if you are a programmer, if you don’t have web 
basics, you will be confused by a column name like list_1_item.” 

Secondly, we found that it was common for participants to make 
mistakes in previous demonstrations. With MIWA, participants can 
easily undo, redo, and modify their previous actions in a demonstra-
tion trace. Specifcally, MIWA users performed an average of 2.37 
undo, redo, and editing actions to refne their demonstration traces. 
However, with Rousillon, participants had to start over again or 
directly edit the generated script, both of which turned out to be 
time-consuming. Specifcally, when using Rousillon, 15 out partic-
ipants got stuck due to program editing errors and restarted the 
application to try again, adding to their total completion time. They 
took an average of 4 minutes and 31 seconds to fnish the tasks after 
the frst failure. By contrast, when using MIWA, only 8 participants 
failed on the frst attempt. During the frst attempt, participants 

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Pa
rti

cip
an

t C
ou

nt

I felt confident about the web automation script

MIWA
Rousillon

Figure 7: User confdence on the web automation scripts 
when using Rousillon and MIWA. The dotted lines repre-
sent the mean confdence ( 5.58 vs. 6.50 ). 

Mental Demand*** Hurry* Performance** Effort*** Frustration***
1

2

3

4

5

6

7
Participants using MIWA Participants using Rousillon

Figure 8: User responses to the NASA TLX questionnaire 
with statistically signifcant mean diferences marked with 

asterisks ( *: p<0.05, **: p<0.01, ***: p<0.001 based on t-test). 

encountered 5 Type I errors and 2 Type IV errors. These errors 
were promptly noticed and communicated to the participants. On 
average, they only needed 2 minutes and 8 seconds to refne their 
traces and successfully complete the task on the second attempt. 
P21 said, “I think the edit and delete options are really user-friendly 
because users do not need to start over when they accidentally click 
the wrong items or feed the wrong items to the program.” 

7.2 User Confdence and Cognitive Overhead 
In the post-study survey, participants self-reported their confdence 
in the generated web automation scripts on a 7-point scale (1—very 



MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

1 2 3 4 5 6 7

Pa
rti

cip
an

t C
ou

nt

1 1

6

16

It was helpful to see the vidual 
 correspondence in NL description.

1 2 3 4 5 6 7

1
3

4

16

It was helpful to see the NL 
description of a web automation.

1 2 3 4 5 6 7

Pa
rti

cip
an

t C
ou

nt

1
2

4
5

12

It was helpful to see the alerts
 of the anomaly detection.

1 2 3 4 5 6 7

1
3

4
3

13

It was helpful to undo/redo/
edit the demonstration trace.

Figure 9: User ratings on the usefulness of individual features (vertical bar indicating the median) 

low confdence, 7—very high confdence). As shown in Figure 7, par-
ticipants expressed a higher level of confdence when using MIWA 
compared with using Rousillon ( 6.50 vs. 5.58 ). The mean difer-
ence of 0.92 is statistically signifcant ( unpaired t-test: t = -3.05085, 

df = 23, p-value = 0.00189 ). The increase in user confdence may 
be attributed to NL explanations and visual correspondences pro-
vided by MIWA. P17 said, “I can validate the results by looking at 
the natural language explanation and the operations list easily.” P19 
said, “I was able to understand what parts of the webpage were being 
scraped due to the highlighting feature so I was confdent that all the 
information was correct.” 

As shown in Figure 8, participants using MIWA had less men-
tal strain, efort, and stress. There are three reasons. First, MIWA 
provides an NL description of the synthesis program, which is intu-
itive. Therefore, participants were not required to understand the 
grammar of the web automation language. P14 stated, “The program 
description is more intuitive and user-friendly to just check which 
felds are being recorded.” Secondly, the visual correspondence fea-
ture of MIWA allows users to highlight the matching column on the 
target page. P18 explained, “it’s helpful to highlight the generated 
script to see what elements MIWA was considering while scraping.” 
Thirdly, users can easily validate the behavior of the generated 
script using the debugging feature provided by MIWA. P8 said, “I 
liked that it was easy to delete mistakes with the scraping, you didn’t 
have to restart the whole program.” 

7.3 User Ratings of Individual Features 
Figure 9 shows the participants’ ratings over the key features in 
MIWA. Among all features, the visual correspondence feature is 
valued the most by participants, followed by the NL description. As 
P1 explained, “Highlighting the text we are about to scrape helps a 
lot. Showing real-time natural language description makes it feel like 
we are going in the right direction, and we can see it learning and 
improving.” Anomaly detection is the third favorite feature with 
17 participants confrming its usefulness. P10 said, “MIWA provides 
very user-friendly suggestions and warnings.” Finally, 16 participants 
found it helpful to undo, redo, and edit their previous actions in the 
demonstration trace. P4 stated, “It is very easy to modify or remove 
the inputs provided.” 

1 2 3 4 5 6 7
Rousillon                                                    MIWA

0

2

4

6

8

10

Pa
rti

cip
an

t C
ou

nt

With which tool did you feel more confident about 
the generated web automation script?

Median

Figure 10: User Preference between Rousillon and MIWA 

200 400 600 800 1000 1200
Completion Time (s)

non-expert

Experienced

Figure 11: Completion Time Comparison 

7.4 User Preference and Feedback 
Figure 10 shows the distribution of user preferences between MIWA 
and Rousillon. 21 out of the 24 participants preferred MIWA over 
Rousillon. We coded the responses of participants to the question re-
garding what they liked about MIWA and discovered three themes. 
First, participants noted that MIWA made the program easy to com-
prehend. P24 stated, “It’s more easy to understand and validate my 
operations correctness.” P5 said, “You don’t need certain background 
to complete the task.” Second, participants noted that MIWA assisted 
them in validating the outcomes of the synthesis. P20 said, “The 
executions are editable, there are NL explanations, and it’s faster.” P8 
stated, “I found it more helpful because I was able to go back in my 
steps if I had made a mistake. The program was also a little easier to 
understand in terms of what it identifed as the steps.” 

In the post-task survey, we asked what additional features or in-
formation could have helped participants complete the work more 
efectively. 4 participants complained about the speed of the syn-
thesizer and hoped for its improvement. 3 participants mentioned 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Chen et al. 

that it would be benefcial to have more advanced functions, such 
as scraping images. 

7.5 The Impact of User Expertise 
Figure 11 shows the distribution of task completion time for partic-
ipants who had experience with web automation (i.e., experienced 
users, N=14) vs. participants who had no experience with web au-
tomation (i.e., non-experts, N=10). Overall, experienced users took 
an average of 7 minutes and 26 seconds, whereas non-experts took 
10 minutes and 34 seconds. However, the mean diference of 3 min-
utes and 8 seconds was not statistically signifcant ( unpaired t-test: 
p=0.07019 ). This implies user expertise appears to have a limited 
impact on user performance. We can interpret this as a narrowing 
of users’ performance gap between novices and experts, which 
demonstrates the efectiveness of MIWA. 

While all non-experts (10/10) and the majority of experts (11/14) 
preferred MIWA over Rousillon, three experts found Rousillon more 
helpful for programmers since they can directly edit the automation 
script in the visual language. This provides more fexibility and 
convenience for them. P15 said, “MIWA is more suitable for people 
who do not know programming, but Rousillon is more useful for 
programmers.” We also did a Chi-Square test of independence and 
found that there was no statistically signifcant association between 
user preference and expertise ( p=0.2416 ). This implies that user 
expertise has a limited impact on user preference. Nevertheless, 
it is worthwhile investigating how to support experts in exerting 
their knowledge and expertise. 

8 QUANTITATIVE EVALUATION 
We conducted a case study with 29 real-world web automation tasks 
found in an online forum for web automation [4]. Some examples 
of these tasks include scraping movie information from IMDb’s 
Most Popular Movies page (benchmark ID 56), scraping product 
data from multiple pages (benchmark ID 34) from eBay, and scrap-
ing company data from government websites based on business 
names (benchmark ID 127). We have provided the task description, 
scraping results, and screenshots of the fnal script synthesized by 
MIWA for each task in the Supplementary Material. 

Since the goal of this quantitative study is to verify that MIWA 
can be used to solve various tasks instead of evaluating its learnabil-
ity or usability, the frst three authors independently solved these 
29 tasks using MIWA. They represent expert users who are familiar 
with the tool and have rich experience in web automation. Thus, 
the results of this study should be interpreted as the performance 
of MIWA in ideal situations. A task is considered failed if an author 
cannot solve the task after 20 minutes. 

Overall, two authors solved 22 of the 29 tasks with an average 
of 3 minutes and 6 seconds and 2 minutes 58 seconds respectively, 
and one author solved 21 tasks with an average of 2 minutes and 
25 seconds. 20 tasks were solved by all three authors. This result 
suggests that MIWA may be a useful tool for solving a wide range 
of web automation tasks. 

There are two main reasons why MIWA fails to synthesize the 
correct scripts for some tasks. First, MIWA ranks the generated 
scripts by their length and only returns the shortest script to users. 
Thus, the synthesis algorithm can accidentally leave out correct 

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

Click
ScrapeText
ScrapeLink

GoBack
SendKeys
SendData

ForEach
While

Figure 12: The number of web automation tasks that cover 
diferent kinds of statements in the script 

0 2 4 6 8 10 12 14
Number of Tasks

Type I
Type II
Type III
Type IV

Figure 13: Utility rate of the anomaly detection feature 

scripts if they are not the shortest. This limitation can be addressed 
by rendering top-k scripts for users to choose from. Second, some 
tasks are too complicated to be solved within 20 minutes. For exam-
ple, some tasks require generating automation scripts with more 
than three levels of loops. As the expected number of loops in a 
script increases, the search space will increase exponentially. This 
signifcantly slows down the script generation process. 

The results of the quantitative study also indicate that certain 
translation rules are much more commonly used than others. Specif-
ically, Figure 12 shows how often each rule is triggered in these 29 
tasks. The translation rules for Click and ScrapeText are the most 
utilized, triggered by 18 and 20 tasks, respectively. The translation 
rules for SendKeys and While are the least utilized. 

In addition, to investigate the utility rate of the anomaly detec-
tion feature, we analyzed the data anomalies that occurred in the 
quantitative study. Figure 13 shows that the most common data 
anomaly was Type I (invalid action), which occurred in 14 out of 29 
tasks. Type II (duplicate action) was triggered in 3 out of 29 tasks, 
while Type III (empty data) and Type IV (inconsistent data format) 
were triggered in 4 and 6 out of 29 tasks, respectively. These results 
show that the anomaly detection feature is frequently triggered in 
web automation tasks and can cover a range of errors. 

9 DISCUSSION 

9.1 Design Implications 
The results of our user study indicate that providing interaction sup-
port for program understanding and validation in PBD-based web 
automation can signifcantly increase both task-solving efciency 
and user confdence in the generated script. Therefore, it is worth 
continuing to investigate new interactive mechanisms to facilitate 



MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

program comprehension and validation in web automation. Here, 
we conclude our design implications: 

9.1.1 Enhancing User Understanding through Step-by-step Natural 
Language (NL) Explanation. Future work on web automation and 
PBD should consider incorporating natural language explanations 
to aid users in program comprehension and validation. This feature 
is highly appreciated by our users. Not only does this make the 
automation script more accessible to users, but it also signifcantly 
simplifes the process of identifying and resolving any bugs in 
the web automation scripts. Thus, NL explanations would serve 
as an efcient communication vehicle for both non-experts and 
experts, bridging the gap between complex programs and user 
mental models. 

9.1.2 Supporting program debugging and repairing for end-users. 
Providing debug and repairing mechanisms that are friendly to 
end-users is critical in the realm of web automation. During demon-
strations, it is common for participants to make mistakes while 
demonstrating. MIWA addresses this issue by enabling users to 
step through each individual step in an NL description. This feature 
allows them to observe live feedback and directly edit the demon-
stration trace to fx observed errors. While the comparison baseline 
allows users to directly edit the generated script to fx errors, our 
participants found it difcult to use since they are not familiar with 
the visual programming language used by the baseline. 

9.1.3 Detecting Inconsistencies in Web Structures and Elements. In 
the web automation process, it is common to encounter inconsistent 
web elements on diferent pages of the same website, or even across 
similar websites. These inconsistencies can lead to automation 
errors and, in severe cases, system crashes. Therefore, it is important 
to detect these inconsistencies, promptly communicate them to 
users, and provide support to help users handle them. This would 
not only prevent potential system breakdowns but also enhance 
the overall automation process. 

9.1.4 Improving Synthesis Eficiency in Complex Tasks. Synthesis 
efciency remains a signifcant challenge in PBD systems, especially 
in complex tasks. Several potential solutions could be considered 
to address this issue. For instance, researchers might explore the 
possibility of synthesizing partial programs, a technique that breaks 
down complex tasks into smaller, manageable sub-tasks, thereby 
improving synthesis efciency. Furthermore, providing users with 
guidance on how to decompose tasks could also prove benefcial. 
Lastly, implementing mechanisms to solicit early feedback on task 
performance could help identify and rectify issues sooner, thus 
enhancing the overall efciency of the process. Another promising 
solution is to predict the script even if the users did not fnish the 
whole demonstration, which could save time and prevent poten-
tial demonstration errors. If the system can propose the possible 
program in advance, the user only needs to validate the program 
without further demonstrations. This feature would be similar to 
how the code autocompletion feature works in Copilot [2]. 

9.2 Limitations 
The quantitative evaluation (Section 8) reveals several technical 
limitations of MIWA. First, only returning the top-1 script generated 

by a PBD system is likely to miss correct but lower-ranked scripts. 
Therefore, it would be helpful to provide multiple alternative scripts 
for users to select from. Second, MIWA currently does not support 
some dynamic webpage features such as dynamically rendered 
contents (e.g., infnite scrolling list). Third, MIWA uses a simple 
heuristic-based method to detect data anomalies. Thus, there may 
be corner cases that cannot be handled by our current heuristics. 
Besides, MIWA currently does not support fle downloading due 
to safety concerns, but it allows users to scrape links of the fles 
to download via the ScrapeLink operator. MIWA does not support 
timing, which is critical for handling asynchronous events and 
other time-related tasks. 

Our current user study design restricts us to attributing partici-
pants’ success to individual MIWA features separately. Though we 
asked participants to rate the usefulness of each feature in the post-
task survey (Section 7.3), this feature is a subjective measurement. 
A more objective way to measure the usefulness of each feature is 
to create variants of the system by disabling each key feature and 
use them as comparison baselines in the user study. 

9.3 Future Work 
9.3.1 Render Multiple Synthesized Programs in PBD Systems. Our 
synthesis algorithm currently ranks generated scripts based on 
their length and always returns the shortest script. This strategy 
sometimes misses correct programs that are not the shortest. It 
can be improved in two ways. First, PBD systems should allow 
users to navigate alternative program candidates rather than just a 
single one. To mitigate the cognitive overhead caused by inspecting 
multiple programs, it is necessary to investigate efective and in-
teractive mechanisms to enable swift and seamless navigation and 
comparison among multiple programs. Second, it is worthwhile 
investigating more efective algorithms to rank and select synthe-
sized programs to render. For instance, one can experiment with 
multi-criteria ranking [56] to select a small set of representative 
but diverse program candidates. There is also prior work that uses 
machine learning to select programs [54, 59]. 

9.3.2 Eliciting Human Feedback to Guide Program Synthesis for 
Complex Tasks. It takes a long time to synthesize a script for com-
plex tasks. A promising solution is to synthesize a partial program 
frst and elicit human feedback to concretize the partial program. 
Specifcally, user actions that are not supported or generalizable 
can be represented as “holes” in the script. During script execution, 
when encountering a hole, the PBD system will pause and prompt 
users to perform the actions manually. Once it is completed, the 
automated execution will resume and in the meantime, the synthe-
sizer will make another attempt to synthesize an expression to fll 
the hole based on user actions. This method allows for the seamless 
integration of manual actions into the otherwise automated process, 
increasing the system’s versatility and generalizability. 

9.3.3 Enhancing Internationalization. MIWA’s synthesis compo-
nent can be applied to non-English websites, as it relies on the 
DOM structure rather than the content of elements. However, to 
fully support internationalization, we need to adjust the translation 
rules outlined in Table 1 to enable the translation of a synthesized 
script into diferent languages. Furthermore, we need to update 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Chen et al. 

the regular expressions in Table 2 to identify data anomalies in a 
non-English context. 

10 CONCLUSION 
In this paper, we introduce MIWA, an interactive PBD system that 
automatically generates scripts for web automation. To help users 
gain more trust in the generated script, MIWA provides a step-by-
step natural language description of the script with visual corre-
spondence to the content on the target website. MIWA also supports 
fne-grained control over the web automation process by allowing 
users to undo, redo, and edit the demonstration trace. Users can 
validate the program step by step without having to restart the 
tool. In addition, MIWA automatically detects web anomalies in 
order to capture the inherent noise in user demonstrations. A user 
study of 24 participants found that when using MIWA, participants 
completed assigned tasks in less than half the time and with more 
confdence compared to using a state-of-the-art PBD-based web 
automation tool [16]. 

ACKNOWLEDGMENTS 
We thank the anonymous reviewers for their helpful feedback. This 
work was supported in part by the National Science Foundation 
under grant numbers CCF-2236233 and CCF-2123654. 

REFERENCES 
[1] 2022. Beautiful Soup. https://www.crummy.com/software/BeautifulSoup 
[2] 2022. Copilot. https://github.com/features/copilot 
[3] 2022. Cypress. https://www.cypress.io 
[4] 2022. iMacros. https://www.progress.com/imacros 
[5] 2022. iMacros.net Forum. https://forum.imacros.net/ 
[6] 2022. Mechanical Soup. https://mechanicalsoup.readthedocs.io/en/stable 
[7] 2022. Puppeteer. https://pptr.dev 
[8] 2022. Scrapy. https://scrapy.org 
[9] 2022. Selenium. https://www.selenium.dev 
[10] 2022. UiPath. https://www.uipath.com 
[11] Christine Alvarado and Randall Davis. 2007. Resolving ambiguities to create a 

natural computer-based sketching environment. In ACM SIGGRAPH 2007 courses. 
16–es. 

[12] Ashley Amaya, Ruben Bach, Florian Keusch, and Frauke Kreuter. 2021. New data 
sources in social science research: Things to know before working with Reddit 
data. Social science computer review 39, 5 (2021), 943–960. 

[13] Kimberly A Barchard and Larry A Pace. 2011. Preventing human error: The 
impact of data entry methods on data accuracy and statistical results. Computers 
in Human Behavior 27, 5 (2011), 1834–1839. 

[14] Sarah Chasins, Shaon Barman, Rastislav Bodik, and Sumit Gulwani. 2015. Browser 
record and replay as a building block for end-user web automation tools. In 
Proceedings of the 24th International Conference on World Wide Web. 179–182. 

[15] Sarah Elizabeth Chasins. 2019. Democratizing Web Automation: Programming for 
Social Scientists and Other Domain Experts. Ph. D. Dissertation. UC Berkeley. 

[16] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing distributed hierarchical web data. In Proceedings of the 31st Annual ACM 
Symposium on User Interface Software and Technology. 963–975. 

[17] Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang. 2022. 
WebRobot: web robotic process automation using interactive programming-by-
demonstration. In Proceedings of the 43rd ACM SIGPLAN International Conference 
on Programming Language Design and Implementation. 152–167. 

[18] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task 
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183. 

[19] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R Klemmer. 2007. Program-
ming by a sample: rapidly creating web applications with d. mix. In Proceedings 
of the 20th annual ACM symposium on User interface software and technology. 
241–250. 

[20] Andrea Hess, Karin Anna Hummel, Wilfried N Gansterer, and Günter Haring. 
2015. Data-driven human mobility modeling: a survey and engineering guidance 
for mobile networking. ACM Computing Surveys (CSUR) 48, 3 (2015), 1–39. 

[21] Chris Hess and Sarah E Chasins. 2022. Informing Housing Policy through Web 
Automation: Lessons for Designing Programming Tools for Domain Experts. In 
CHI Conference on Human Factors in Computing Systems Extended Abstracts. 1–9. 

[22] David F Huynh, Robert C Miller, and David R Karger. 2006. Enabling web browsers 
to augment web sites’ fltering and sorting functionalities. In Proceedings of the 
19th annual ACM symposium on User interface software and technology. 125–134. 

[23] Thanapong Intharah, Daniyar Turmukhambetov, and Gabriel J Brostow. 2019. 
Hilc: domain-independent pbd system via computer vision and follow-up ques-
tions. ACM Transactions on Interactive Intelligent Systems (TiiS) 9, 2-3 (2019), 
1–27. 

[24] Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo, and Kaisa Miettinen. 2018. 
Data-driven evolutionary optimization: An overview and case studies. IEEE 
Transactions on Evolutionary Computation 23, 3 (2018), 442–458. 

[25] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice. 
2014. Kitty: sketching dynamic and interactive illustrations. In Proceedings of the 
27th annual ACM symposium on User interface software and technology. 395–405. 

[26] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and 
George Fitzmaurice. 2014. Draco: bringing life to illustrations with kinetic 
textures. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems. 351–360. 

[27] Brittany Kondo and Christopher Collins. 2014. Dimpvis: Exploring time-varying 
information visualizations by direct manipulation. IEEE transactions on visual-
ization and computer graphics 20, 12 (2014), 2003–2012. 

[28] Raymond Kosala and Hendrik Blockeel. 2000. Web mining research: A survey. 
ACM Sigkdd Explorations Newsletter 2, 1 (2000), 1–15. 

[29] Rebecca Krosnick and Steve Oney. 2021. Understanding the Challenges and Needs 
of Programmers Writing Web Automation Scripts. In 2021 IEEE Symposium on 
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1–9. 

[30] Rebecca Krosnick and Steve Oney. 2022. ParamMacros: Creating UI Automation 
Leveraging End-User Natural Language Parameterization. In 2022 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 
1–10. 

[31] Vlad Krotov and Matthew Tennyson. 2018. Research note: scraping fnancial 
data from the web using the R language. Journal of Emerging Technologies in 
Accounting 15, 1 (2018), 169–181. 

[32] David Kurlander, Allen Cypher, and Daniel Conrad Halbert. 1993. Watch what I 
do: programming by demonstration. MIT press. 

[33] Jürgen Landauer and Masahito Hirakawa. 1995. Visual AWK: a model for text 
processing by demonstration. In Proceedings of Symposium on Visual Languages. 
IEEE, 267–274. 

[34] Tessa Lau et al. 2008. Why PBD systems fail: Lessons learned for usable AI. In 
CHI 2008 Workshop on Usable AI. 65–67. 

[35] Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction by 
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming 
Language Design and Implementation. 542–553. 

[36] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter: 
automating & sharing how-to knowledge in the enterprise. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems. 1719–1728. 

[37] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating 
multimodal smartphone automation by demonstration. In Proceedings of the 2017 
CHI conference on human factors in computing systems. 6038–6049. 

[38] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, 
Wanling Ding, Tom M Mitchell, and Brad A Myers. 2018. Appinite: A multi-modal 
interface for specifying data descriptions in programming by demonstration using 
natural language instructions. In 2018 IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC). IEEE, 105–114. 

[39] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M Mitchell, 
and Brad A Myers. 2019. Pumice: A multi-modal agent that learns concepts and 
conditionals from natural language and demonstrations. In Proceedings of the 
32nd annual ACM symposium on user interface software and technology. 577–589. 

[40] James Lin, Jefrey Wong, Jefrey Nichols, Allen Cypher, and Tessa A Lau. 2009. 
End-user programming of mashups with vegemite. In Proceedings of the 14th 
international conference on Intelligent user interfaces. 97–106. 

[41] Greg Little, Tessa A Lau, Allen Cypher, James Lin, Eben M Haber, and Eser 
Kandogan. 2007. Koala: capture, share, automate, personalize business processes 
on the web. In Proceedings of the SIGCHI conference on Human factors in computing 
systems. 943–946. 

[42] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr 
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User interac-
tion models for disambiguation in programming by example. In Proceedings of the 
28th Annual ACM Symposium on User Interface Software & Technology. 291–301. 

[43] Tyler H McCormick, Hedwig Lee, Nina Cesare, Ali Shojaie, and Emma S Spiro. 
2017. Using Twitter for demographic and social science research: tools for data 
collection and processing. Sociological methods & research 46, 3 (2017), 390–421. 

[44] Richard G McDaniel and Brad A Myers. 1999. Getting more out of programming-
by-demonstration. In Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems. 442–449. 

https://www.crummy.com/software/BeautifulSoup
https://github.com/features/copilot
https://www.cypress.io
https://www.progress.com/imacros
https://forum.imacros.net/
https://mechanicalsoup.readthedocs.io/en/stable
https://pptr.dev
https://scrapy.org
https://www.selenium.dev
https://www.uipath.com


MIWA: Mixed-Initiative Web Automation for Beter User Control and Confidence 

[45] Jan Meskens, Kris Luyten, and Karin Coninx. 2010. D-Macs: Building Multi-
Device User Interfaces by Demonstrating, Sharing and Replaying Design Actions. 
In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and 
Technology (New York, New York, USA) (UIST ’10). Association for Computing Ma-
chinery, New York, NY, USA, 129–138. https://doi.org/10.1145/1866029.1866051 

[46] Robert C Miller and Brad A Myers. 2002. LAPIS: Smart editing with text structure. 
In CHI’02 Extended Abstracts on Human Factors in Computing Systems. 496–497. 

[47] Francesmary Modugno and Brad A. Myers. 1997. Visual programming in a visual 
shell—A unifed approach. Journal of Visual Languages & Computing 8, 5-6 (1997), 
491–522. 

[48] Mauro Mosconi and Marco Porta. 2000. Iteration constructs in data-fow visual 
programming languages. Computer languages 26, 2-4 (2000), 67–104. 

[49] Brad A Myers. 1998. Scripting graphical applications by demonstration. In 
Proceedings of the SIGCHI conference on Human factors in computing systems. 
534–541. 

[50] Brad A Myers and William Buxton. 1986. Creating highly-interactive and graph-
ical user interfaces by demonstration. ACM SIGGRAPH Computer Graphics 20, 4 
(1986), 249–258. 

[51] Brad A Myers, Jade Goldstein, and Matthew A Goldberg. 1994. Creating charts 
by demonstration. In Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems. 106–111. 

[52] Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman. 
2022. SemanticOn: Specifying Content-Based Semantic Conditions for Web 
Automation Programs. (2022). 

[53] Yury Puzis. 2012. An interface agent for non-visual, accessible web automation. In 
Adjunct proceedings of the 25th annual ACM symposium on User interface software 
and technology. 55–58. 

[54] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program 
properties from" big code". ACM SIGPLAN Notices 50, 1 (2015), 111–124. 

[55] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn 
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian 
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009), 
60–67. 

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

[56] Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and Chew Lim Tan. 2004. Multi-
criteria-based active learning for named entity recognition. In Proceedings of the 
42nd annual meeting of the Association for Computational Linguistics (ACL-04). 
589–596. 

[57] Ben Shneiderman. 1981. Direct manipulation: A step beyond programming 
languages. In Proceedings of the Joint Conference on Easier and More Productive 
Use of Computer Systems.(Part-II): Human Interface and the User Interface-Volume 
1981. 143. 

[58] Ben Shneiderman. 1982. The future of interactive systems and the emergence of 
direct manipulation. Behaviour & Information Technology 1, 3 (1982), 237–256. 

[59] Rishabh Singh and Sumit Gulwani. 2015. Predicting a correct program in pro-
gramming by example. In International Conference on Computer Aided Verifcation. 
Springer, 398–414. 

[60] Arjun Srinivasan and John Stasko. 2017. Orko: Facilitating multimodal interaction 
for visual exploration and analysis of networks. IEEE transactions on visualization 
and computer graphics 24, 1 (2017), 511–521. 

[61] Steven L Tanimoto. 1990. VIVA: A visual language for image processing. Journal 
of Visual Languages & Computing 1, 2 (1990), 127–139. 

[62] Elior Vila, Galia Novakova, and Diana Todorova. 2017. Automation testing 
framework for web applications with Selenium WebDriver: Opportunities and 
threats. In Proceedings of the International Conference on Advances in Image 
Processing. 144–150. 

[63] Ashenaf Zebene Woldaregay, Eirik Årsand, Ståle Walderhaug, David Albers, 
Lena Mamykina, Taxiarchis Botsis, and Gunnar Hartvigsen. 2019. Data-driven 
modeling and prediction of blood glucose dynamics: Machine learning applica-
tions in type 1 diabetes. Artifcial intelligence in medicine 98 (2019), 109–134. 

[64] Jefrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards 
end-user programming for the web. In Proceedings of the SIGCHI conference on 
Human factors in computing systems. 1435–1444. 

[65] Tal Yarkoni, Dean Eckles, James AJ Heathers, Margaret C Levenstein, Paul E 
Smaldino, and Julia I Lane. 2021. Enhancing and accelerating social science via 
automation: Challenges and opportunities. Harvard Data Science Review 3, 2 
(2021). 

https://doi.org/10.1145/1866029.1866051

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web Automation
	2.2 Programming-by-Demonstration (PBD)
	2.3 Interactive Support in Existing PBD Systems

	3 Design Goals and System Overview
	4 USAGE SCENARIO
	5 System Implementation
	5.1 Synthesizing Web Automation Scripts
	5.2 Natural Language Explanation
	5.3 Supporting Fine-grained Control
	5.4 Anomaly detection

	6 User Study
	6.1 Participants
	6.2 Tasks
	6.3 Protocols

	7 RESULTS
	7.1 User Performance
	7.2 User Confidence and Cognitive Overhead
	7.3 User Ratings of Individual Features 
	7.4 User Preference and Feedback
	7.5 The Impact of User Expertise

	8 Quantitative Evaluation
	9 Discussion
	9.1 Design Implications
	9.2 Limitations
	9.3 Future Work

	10 Conclusion
	Acknowledgments
	References



