
SQLucid: Grounding Natural Language DatabaseQueries with
Interactive Explanations

Yuan Tian
Purdue University

West Lafayette, IN, USA
tian211@purdue.edu

Jonathan K. Kummerfeld
University of Sydney
Sydney, Australia

jonathan.kummerfeld@sydney.edu.au

Toby Jia-Jun Li
University of Notre Dame
Notre Dame, IN, USA

toby.j.li@nd.edu

Tianyi Zhang
Purdue University

West Lafayette, IN, USA
tianyi@purdue.edu

Figure 1: An Overview of SQLucid: A○ Given a model-generated SQL query, SQLucid helps the user understand the query

behavior by generating a step-by-step explanation in natural language. When the user hovers over an entity (e.g., a column

name) in the natural language explanation, SQLucid will highlight the corresponding elements in the database and query

result to help the user grasp the visual correspondence between the explanation and the database. B○ For each step in the

natural language explanation, the user can inspect the intermediate query result of the step to validate query behavior and

diagnose query errors. C○ Once the user identifies the erroneous step, they can directly edit the explanation of that step to

specify the correct behavior and guide the model to refine the query.

ABSTRACT

Though recent advances in machine learning have led to significant
improvements in natural language interfaces for databases, the ac-
curacy and reliability of these systems remain limited, especially
in high-stakes domains. This paper introduces SQLucid, a novel
user interface that bridges the gap between non-expert users and
complex database querying processes. SQLucid addresses exist-
ing limitations by integrating visual correspondence, intermediate
query results, and editable step-by-step SQL explanations in natural
language to facilitate user understanding and engagement. This
unique blend of features empowers users to understand and re-
fine SQL queries easily and precisely. Two user studies and one
quantitative experiment were conducted to validate SQLucid’s ef-
fectiveness, showing significant improvement in task completion
accuracy and user confidence compared to existing interfaces. Our
code is available at https://github.com/magic-YuanTian/SQLucid.
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1 INTRODUCTION

The rise of big data has led to a growing demand for querying
databases for data analysis and decision-making. To fully unleash
the analytical power of databases, many natural language (NL) in-
terfaces [18, 24, 54, 76] have been developed, enabling non-experts
to express and fulfill their goals through NL queries. The backbone
of these interfaces is a computational approach that translates an
NL query to a database query in a formal language such as SQL.
Early work in this domain applied rule-based or grammar-based
approaches [34, 85]. Recent advances in deep learning have led to
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Figure 2: The iterative SQL refinement pipeline of SQLucid

a variety of text-to-SQL models [59, 72, 78, 86], achieving unprece-
dented performance on NL querying tasks.

Despite these great strides, text-to-SQL models cannot always re-
liably generate correct queries aligned with user intent. As a result,
users run the risk of receiving wrong query results and henceforth
making incorrect or suboptimal decisions. This is critical in high-
stakes domains such as finance and healthcare. The leaderboard
of a popular evaluation text-to-SQL benchmark, Spider1, indicates
that even with the best system [59] built on GPT-4 still suffers from
an error rate of 10%. It is crucial to help users identify and fix the po-
tential errors in the database queries generated by these models to
avoid incorrect or suboptimal decisions. To bridge the gap, several
approaches have been developed to enable users to provide feedback
to SQL generation in an interactive manner [29, 42, 46, 54, 81].

However, most approaches only support feedback in constrained
forms, e.g., answering multiple-choice questions [24, 46, 81], or
changing keywords using a drop-downmenu [54]. Such constrained
feedback is insufficient to fix complex errors in real-world tasks.
Ning et al. [55] conducted a user study to evaluate three represen-
tative approaches for SQL generation and refinement, including
MISP [81], DIY [54], and SQLVis [52]. They found no statistically
significant difference in user performance compared to manually
writing SQL queries. Particularly, participants found it hard to un-
derstand the generated query and provide feedback.

To address this challenge, we draw inspiration from the ground-
ing theory in communication [12]. The theory suggests that effec-
tive communication requires a common ground, where speakers
design utterances for listeners to understand and listeners pro-
vide feedback to resolve ambiguity and demonstrate understanding.
However, recent studies in code generation have highlighted chal-
lenges due to insufficient communication between systems and
developers [5, 7, 70]. Systems often misinterpret the developer’s
intent, while developers often struggle to comprehend the gener-
ated code. This communication gap, which arises from a lack of
common ground, results in code that does not align with user intent
and hinders effective feedback [5].

Based on this insight, we develop an interactive system, SQLu-
cid, that leverages step-by-step SQL explanations as the common
ground between SQL generation models and users. Figure 2 pro-
vides an overview of the interaction pipeline. In each iteration,
SQLucid generates an explanation in NL to describe the individual
1https://yale-lily.github.io/spider

steps in the generated SQL query. Through the rich interaction
mechanisms provided by SQLucid, users can quickly navigate the
explanation to understand the query and verify its behavior. If users
recognize any erroneous steps, they can directly edit the explana-
tion to inform the model which part of the SQL query should be
regenerated and what the expected behavior is.

Compared with existing techniques, SQLucid has two key fea-
tures, visual correspondence and intermediate query results. First,
without an efficient way to navigate the database, users could eas-
ily become overwhelmed by the volume of data and complexity
in the schema. Visual correspondence helps users instantly locate
the related data by interacting with the entities mentioned in the
explanation. They can also mentally connect elements mentioned
in the explanation with elements in the database, which is helpful
for sense-making. Second, the complex database schema makes
certain query operations difficult to intuitively explain in NL. This
is due to a logic gap between human understanding and database
operations [66]. For instance, explaining a JOIN operation to users
based on primary and foreign keys can be challenging. Render-
ing intermediate results provides a convenient way for users to
understand and verify the function of each step.

Finally, we conducted a comprehensive evaluation of the usabil-
ity of SQLucid. This included two user studies with 38 participants
in total and a quantitative experiment with 100 tasks. The first user
study compared SQLucidwith MISP [81] and DIY [54], demonstrat-
ing the effectiveness of our design choices over alternative designs.
The second user study measured the contribution of each key fea-
ture in SQLucid, showing that each feature significantly improves
usability. The quantitative experiment shows the generalizability to
a broad range of querying tasks. The results indicate that accuracy
improves from 49% when no interaction is possible, to 89% when
using SQLucid and the user is familiar with it.

2 RELATEDWORK

2.1 Interactive Support for Text-to-SQL

There is a large body of literature on converting natural language
(NL) questions to SQL queries, ranging from logic-based [22, 74],
rule-based [3, 42, 58, 62, 80] to neural-based methods [28, 60, 63,
72, 86]. However, these techniques only focus on improving the
accuracy of text-to-SQL methods, instead of designing interactions
to help non-experts understand and improve the query.

We summarize existing interactive support for text-to-SQL gen-
eration into two categories—(1) explaining generated queries back to
users and (2) soliciting user feedback to refine queries. QueryVis [41]
and SQLVis [52] explain SQL queries by visualizing them as graphs.
However, graphical representations can become unintuitive and
overly complex for end-users [55]. Many existing systems resort to
explanations in NL instead [36, 37, 43, 54, 77]. For instance, Xu et
al. [77] first convert an SQL query into a directed graph and then use
a graph-to-sequencemodel to generate an NL summary of the query.
DIY [54] uses pre-defined templates to translate an SQL query into
a step-by-step explanation in NL. Similar to DIY [54], SQLucid
also leverages step-by-step explanations in NL but uses a different
grammar-based method. The benefit is that such a grammar-based
method can handle arbitrarily complex queries without being re-
stricted to pre-defined templates. Furthermore, existing systems

https://yale-lily.github.io/spider


SQLucid: Grounding Natural Language DatabaseQueries with Interactive Explanations UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

generally present explanations as static text, offering limited in-
teractive capabilities for users to understand, validate, and refine
queries. DIY [54] attempts to improve clarity by rendering interme-
diate results on a “small-but-relevant” sample database, but both
their study [54] and the study by Ning et al. [55] indicate that this
approach can lead to user confusion. Specifically, users may find
inconsistency between query results on the sampled database with
the full database, as some relevant data may be missing. To address
this issue, SQLucid renders intermediate query results by executing
on the entire database to make users fully comprehend the function-
ality of each step. Additionally, we propose further incorporating
rich interactions in SQLucid such as visual correspondence and
direct query editing to augment the utility of explanations, thereby
enhancing user engagement and understanding.

A common way to solicit user feedback is through conversa-
tions [19, 24, 46, 81]. For instance, MISP [81], DialSQL [24], and
PIIA [46] detect a set of tokens with high uncertainty during the
decoding process and ask multiple-choice clarification questions to
users. In these systems, users can only passively clarify their intent
by selecting from a limited set of options in the multiple-choice
questions. NL-EDIT [19] allows users to proactively suggest SQL
query edits via free-form text. Then, it uses an encoder-decoder
model to convert the free-form text to a sequence of edits to refine
the query. Despite the flexibility, incorporating such open-ended
feedback is challenging. It requires the model to precisely infer
which parts of the query to edit and which edits to apply.

Direct manipulation [65] is an effective mechanism for rapid and
accurate user feedback. Several text-to-SQL systems support direct
manipulation and allow users to directly refine a query without
knowing SQL syntax [20, 43, 54, 64, 68]. DIY [54], DataTone [20],
and NaLIR [43] allow users to directly change table names, col-
umn names, and values used in a query via a drop-down menu.
In Eviza [64] and Orko [68], users can adjust a numeric value in a
query using a slider. However, these systems only support a lim-
ited set of simple edits to SQL. They do not allow users to specify
complex feedback, e.g., selecting data from two tables (i.e., JOIN),
grouping a set of data records (i.e., GROUP BY), etc.

Our idea of grounding database queries with explanations re-
sembles a recent work by Liu et al. [49]. Liu et al. propose to use
step-by-step explanations as a grounded abstraction to generate
and refine Python code for spreadsheet data analysis. Despite the
similarity in spirit, our work has several key differences in system
design. First, like other text-to-SQL systems that explains SQL in
NL, Liu et al. also only render the explanations as static, plain text.
Compared with spreadsheet data analysis, database querying often
involves complex data schema, multiple tables, and complex op-
erations. Thus, our work presents richer interaction mechanisms
to facilitate query comprehension and validation. Second, given
user edits to a step-by-step explanation in NL, SQLucid performs
fine-grained query refinement at the clause or entity level, without
the need to regenerate the entire query from scratch. By contrast,
their system concatenates the explanations of individual steps as
a new prompt and invokes CodeX [10] to regenerate the entire
Python code. This limits the utility of user feedback on step-by-step
explanations and does not afford precise code refinement.

2.2 Human-AI Collaboration

Promoting efficient collaboration between intelligent systems and
humans has been a long-standing research topic in HCI. This con-
cept was first introduced in the seminal work on man-computer
symbiosis [48]. In that work, Licklider proposed that computers
could perform routine tasks to pave the way for human insights,
while human users could utilize their domain knowledge to make
decisions that computers are not capable of making. Nowadays,
the inaccuracy of AI models in high-stake domains further neces-
sitates collaboration between humans and AI. However, the lack
of interpretability and communication convenience presents a sig-
nificant challenge to effective human-AI collaboration [61]. Even
though humans have the potential to complement AI, they often
struggle to understand AI’s states and effectively express their
thoughts [4, 17, 35, 47, 49, 50]. Specifically, if a user does not under-
stand where the error is and what causes the error, they may find
it difficult to provide effective instructions on fixing the error [66].

Research from various domains has focused on explaining sys-
tem behavior [14, 16, 21, 26, 51]. For example, Head et al.’s work on
Tutorons [26] automatically generates context-relevant, on-demand
in-situ explanations for code snippets, such as regular expressions,
on web pages. While Tutorons aims to bridge the gap between
programmers and complex syntax, SQLucid is designed for non-
programmers to iteratively refine SQL queries in NL. Furthermore,
SQLucid makes these explanations editable in free-form NL, en-
abling intuitive user feedback. SQLucid also incorporates visual
correspondence and intermediate results to deepen user engage-
ment compared to the static explanations provided by Tutorons.

3 USER NEEDS AND DESIGN RATIONALE

3.1 User Needs in SQL Generation

To understand the needs of non-experts when querying databases,
we conducted a literature review of previous papers that have done
a formative study of text-to-SQL systems [52, 54], have done a user
study of existing tools [54, 55], or have discussed the challenges
and opportunities of text-to-SQL systems [1, 8, 13, 30, 53, 66]. Based
on this review, we summarize three major user needs.

N1: Users need effective methods to understand and validate
a generated SQL query, so they can trust the result. Text-to-
SQL systems are primarily designed for non-experts who are not
familiar with SQL. Without additional support, the only way for
them to validate the correctness of a generated query is to carefully
examine if the query result looks reasonable. However, if a query
involves too many rows, columns, and tables, it is cognitively-
demanding and time-consuming to manually examine the query
result. Kim et al. [66] point out that for queries that return a large
amount of data, it is useful for users to understand how the resulting
data is retrieved from the database. So users can reason about
the correctness of the query steps, rather than a large amount of
resulting data. Jagadish et al. [30] argue that database systems can
frustrate users if there is no explanation for some unexpected query
results. In a user study with 12 participants, Narechania et al. [54]
found that participants appreciated explanations and wished to
have multi-modal explanations to help them understand complex
query operations, such as table joining and compound SQL clauses.
Therefore, it is critical to help users validate the query behavior.
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Figure 3: The user interface of SQLucid. (A) The Database panel allows users to switch databases and tables in a database. It also

allows users to manually inspect, search, and filter data. (B) The Question panel allows users to ask a question to the database

in natural language. (C) The Query Result panel shows the query result as well as the intermediate result of individual steps

when the user clicks each step. (D) The Query Explanation panel renders the step-by-step SQL explanation in natural language.

Users can directly edit the explanation to fix the incorrect behavior in a step, add new steps, or delete existing steps.

N2: Users prefer SQL explanations that are concise, well-
organized, and intuitive. Ning et al. [55] compared SQL explana-
tions generated by three interactive systems in a user study. They
found that the majority of participants preferred the shorter ex-
planations provided by DIY [54], since they are easier to read and
understand. Leventidis et al. [41] argued that the explanation in
NL can become very lengthy and verbose for complex SQL queries,
limiting their readability and utility in practice. This is supported
by a controlled lab study with 112 CS undergraduate students [8].
The study found that students can easily get lost when dealing
with long and complex queries. When presenting a query in a more
structured and succinct manner, students experienced significantly
less cognitive load and performed much better in data query tasks.
Therefore, we need to find the right level of abstraction that can
concisely summarize the behavior of a SQL query in a clear and
well-organized manner while matching user expertise.

N3: Users need more flexible and expressive ways to provide
feedback. Most existing systems only support feedback in con-
strained forms, e.g., answering multiple-choice questions [24, 46,
81], changing incorrect keywords in a drop-down menu [54]. This
hinders users’ ability to handle various SQL errors, especially for
those requiring a completely new clause or subquery. As shown by a
recent study [55], such interactive mechanisms did not significantly
improve the task completion rate or reduce the task completion
time in complex text-to-SQL tasks compared with manually fixing

a SQL query. Participants expressed frustration when they found
they could not fix an error using the assigned feedback mechanism.
Thus, non-expert users need a more expressive and flexible way to
guide the model to fix various SQL generation errors.

3.2 Design Rationale

To support N1, we choose natural language as the communication
vehicle, since it is understandable for non-experts and it is also
flexible to express any kind of feedback. An alternative design is to
explain a query in a graphical representation [41, 52]. While graphs
can be visually appealing, they can also become overly complex
and counter-intuitive for non-experts [55].

To supportN2, we adopt step-by-step explanations and augment
them with visual correspondence and intermediate query results.
Users can utilize the visual correspondence to quickly locate rele-
vant data and navigate a large database. This is particularly helpful
when users are not familiar with the database schema or when
there are many tables and columns. Displaying intermediate results
helps users further validate the query behavior on concrete data
and understand how each step contributes to the final result.

To support N3, SQLucid enables users to specify the correct
behavior of a query step by directly editing the description of that
step. There are several alternative designs for this feature. First, al-
ternatively, we could ask users to rephrase the original NL question
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(i.e., prompt engineering) or provide NL feedback in a conversa-
tion [19]. However, recent studies show that prompt engineering is
challenging and accurately interpreting NL feedback is as hard as in-
terpreting the initial NL query [18, 55, 84]. Some systems [20, 43, 54]
also enable users to provide feedback via direct manipulation. As
discussed in Section 2.1, these methods can only support limited ed-
its. Another design option is to allow users to pinpoint errors in the
intermediate or final query results. This design is effective for cer-
tain errors such as including extra columns and when the dataset is
small. However, when the query results include many data records,
it can be cumbersome and time-consuming to inspect all data and
annotate which data records are wrong. Furthermore, regenerating
the query based on input and output data may lead to overfitting, a
known issue in programming-by-example techniques [39, 56].

4 SYSTEM IMPLEMENTATION

In this section, we first describe the base text-to-SQL generation
model used in SQLucid and a pilot study to understand the usability
issues of the base model. We then detail the SQL generation process
in SQLucid and highlight three key features that facilitate efficient
SQL query comprehension, validation, and repair.

4.1 Base Model and Pilot Study

The design of SQLucid is model-agnostic. SQLucid is built upon
a SQL generation system called STEPS [69], which provides algo-
rithms and technical components to generate SQL explanations but
only provides limited interaction support. We choose STEPS since
it generates reliable grammar-based SQL explanation and provides
a pre-trained text-to-clause model for SQL regeneration. However,
one can replace STEPS with other models, e.g., using GPT-4 to
generate SQL and step-by-step explanations.

STEPS provides a limited primitive UI without careful consider-
ation of the usability challenges. It only supports add or removing
explanation steps. To better understand the usability challenges in
STEPS, we conducted a pilot study with three participants. Each
participant completed five data query tasks randomly selected from
Spider [83], with an average task completion time of 4 minutes. We
subsequently interviewed participants about their experiences.

The study revealed challenges in comprehending SQL through
natural language descriptions alone. Participants found it time-
consuming and cumbersome to manually navigate the database
content, especially when explanations referenced multiple tables
and columns. Participants often had to switch between tables and
manually locate mentioned columns, making it difficult to validate
query behavior. Participants also struggled to understand complex
operations like JOINs and the concepts of primary and foreign keys,
particularly in queries involving multiple tables. These findings
highlighted the need for more intuitive ways to connect explana-
tions with database entities and visualize query operations. It is
important to ground the SQL explanations on the data to help users
better comprehend and validate the entities and operations men-
tioned in the explanation. To address the usability issues, SQLucid
proposes rendering visual correspondence, as detailed in Section 4.3,
and displaying intermediate query results, as detailed in Section 4.4.

4.2 SQL Query and Explanation Generation

Given a SQL query generated by the underlying model, SQLucid
generates a step-by-step explanation in NL for the query. Following
STEPS, we use the same text-to-SQL generation model, SmBoP [60].
Yet users can plug in any model they prefer to use. Furthermore, we
adopt the same grammar-based explanation generation algorithm
of STEPS [69]. The SQL query is decomposed into SQL clauses and
each clause is then translated into NL descriptions based on SQL
grammar. This algorithm guarantees a deterministic and accurate
translation from the SQL query to the NL description. Please refer
to the STEPS paper [69] for technical details.

For users who know SQL, we still provide the option to view the
generated SQL by clicking a toggle button below the explanation
(Figure 6 d○). This feature was requested by pilot study users who
knew SQL and wished to double-check SQL code in our iterative
design process. It is not designed for non-experts, since they are
not familiar with SQL syntax and semantics. SQLucid. Reading NL
descriptions and checking intermediate results is the main way for
non-experts to validate SQL.

4.3 Visual Correspondence via Highlighting

As illustrated in Figure 4, SQLucid highlights the noun phrase
of each database entity in blue in the SQL explanation. We chose
blue as it is the standard color for hyperlinks, which implies the
highlighted entity can be interacted with. When users hover over
a highlighted entity, SQLucid will automatically navigate to the
corresponding data in the database panel and highlight the corre-
sponding data. Specifically, if the entity is a table, the drop-down
menu turns green to indicate that the table is in focus (Figure 4
A○). If the entity is a column, SQLucid automatically centers and
highlights the column in yellow (Figure 4 B○).

A special case is nested SQL queries. The explanation generator
of STEPS [69] splits a nested query into subqueries and generates
an explanation for each of them separately. When Subquery A uses
the result of Subquery B, the explanation of Subquery A will refer
to the query result of Subquery B in natural language. To help
users easily recognize which subquery’s result is used by another
subquery, SQLucid highlights the NL references with underscored
hyperlinks. Section 5 illustrates this scenario.

We leverage the explanation generation method to establish the
initial entity mappings. In particular, we instrument the explanation
generator to log the translations between database entities and
noun phrases in the explanation. SQLucid buffers these mappings
in memory and dynamically highlights the database content when
users hover over a noun phrase that maps to a database entity.
Additionally, for nested SQL queries where one query may refer to
the result of another, SQLucid uses natural language description
(e.g., “result of the first query”) to reference the result generated by
a previous query. SQLucid also establishes a mapping and visually
shows the correspondence between the reference and the previous
result. Since SQLucid allows for free editing of the explanation
in NL, users may rephrase some names, introduce new names, or
even make typos. Whenever the explanation is edited, SQLucid
re-calculates the mappings based on text similarity.

We explored various approaches to calculate text similarity be-
tween database entities and SQL explanations. Initially, we con-
sidered using cosine similarity with word embeddings to better
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Figure 4: (A) Hover over a table name and SQLucid automatically switches to the corresponding table and highlights it. (B)

Hover over a column name and SQLucid automatically highlights the entire column.

capture semantic relationships. However, we found that leveraging
semantic information was often inaccurate when dealing with ab-
breviated or similar database entity names. Consequently, we opted
for Levenshtein distance due to its optimal balance of precision
and computational efficiency. Levenshtein distance can effectively
capture nuances in spelling variations and similar names, while its
lightweight nature ensures quick responsiveness in SQLucid.

4.4 Intermediate Query Results

In order to help users understand the purpose of each step, SQLucid
allows users to view the intermediate results corresponding to each
step. To compute the intermediate result, SQLucid synthesizes
a temporary SQL query by combining the current step with all
preceding steps. However, simply concatenating SQL clauses from
these steps may result in syntax errors or incomplete queries. For
instance, missing the SELECT clause leads to an invalid SQL. To
address this issue, we developed a synthesis algorithm inspired by
the grammar-based explanation generation algorithm in STEPS [69].
This algorithm converts a sequence of explanation steps back into a
SQL query while following the grammar rules. Any missing clauses
are automatically populated with dummy placeholders (e.g., SELECT
*). The resulting temporary SQL query is then executed on the
database to compute the intermediate result.

When the user clicks on the circled number of each step, the
background of the corresponding step will turn blue, indicating
this step is selected. The Query Result view (Figure 3 C○) is then
updated to show the intermediate query result.

Figure 5 demonstrates an example.When the user selects the first
step, the database returns all the records in table flight, with an ini-
tial temporary SQL query of “SELECT * FROM flight”. When the
user selects the second step, the database filters out all the records
in the first step that do not satisfy this condition (i.e., flight from Los
Angeles to Honolulu). The temporary SQL query becomes “SELECT
* FROM flight WHERE flight.origin = "Los Angeles" AND

flight.destination = "Honolulu"”. When the user selects the
third step, the database returns the minimal price from the re-
maining records. The temporary SQL query becomes “SELECT MIN
(flight.price) FROM flight WHERE flight.origin = "Los
Angeles" AND flight.destination = "Honolulu"”.

4.5 Query Refinement by Explanation Editing

While inspecting the explanation in NL and the intermediate query
results, if a user finds an erroneous step, they can directly edit the
description of that step to specify the correct behavior (Figure 6
c○). Users can type in any description in free-form text, without
being confined to a certain format. Users can also add a new step
at any position or delete any existing step by clicking on the “Add”
or “Delete” button next to an existing step (Figure 6 b○). Once the
user has finished modifying the explanation, they can click the
“Generate” button to request SQLucid to regenerate the SQL based
on the edited explanation (Figure 6 e○). A complex SQL query can
sometimes consist of multiple subqueries (a SQL statement with
only 1 SELECT keyword) concatenated together with set operations
(e.g. UNION). Within a single subquery, the position of a newly
added step is not important in our design, as SQLucid can reorder
and rectify all steps based on clause types to form a valid subquery.
However, for a complex query involving multiple subqueries, users
should ensure that new steps are added to the explanation of the
corresponding subquery. Finally, SQLucid allows users to check
their edit history and undo/redo some edits by clicking on the
stepper buttons at the bottom (Figure 6 f○).

To interpret the edited explanation and correct the error, we
adopt the same text-to-clause model used in STEPS [69]. It achieves
an exact match accuracy of 90.6%. Like the text-to-SQL model, this
model is independent of our system and can easily be replaced by
other models. After regenerating a clause, SQLucid merges it with
the original query and automatically rectifies any syntax errors or
conflicts. Please refer to the STEPS paper for more technical details.
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Figure 5: When clicking on the step number, the Query Result view will visualize the intermediate result after the selected step.

Figure 6: Interacting with the step-by-step explanation

5 USAGE SCENARIO

Suppose Alice is a social scientist and she wants to investigate the
correlation between people’s mobility behavior patterns and flight
prices since the pandemic. She needs to analyze a large database
with millions of flight records distributed in many different tables.
As the first step, she wants to know the airport with the most flights
to the most popular destination in the first quarter of 2022. Alice
finds it time-consuming to manually filter the database and find
the desired data record. Furthermore, since the information spans
across multiple tables, Alice does not know how to filter the data
based on multiple conditions on multiple tables simultaneously.

Therefore, Alice decides to try SQLucid. She asks, “Show me the

airport which has the most flights to the most popular destination

in the first quarter of 2022.” in the Question panel. Then, based on
Alice’s question, SQLucid automatically generates a SQL query
and executes it in the database. Alice looks at the query result but

she is not sure whether it is correct. Therefore, Alice chooses to
read the step-by-step explanation of the SQL query in the Query
Explanation panel. Since the generated query is a nested query,
SQLucid explains the inner query as the first and the outer query
as the second query below:
Start the first query
(1) Merge data in table flight and table travel.
(2) Keep the records where month is January.
(3) Split the data into groups based on the destination.
(4) Sort the groups based on the number of records in descending

order, and return the first record.
(5) Return the destination.

Start the second query
(1) In table travel.
(2) Keep the records where the destination is the result of the

first query.
(3) Split the data into groups based on the airport code.
(4) Sort the groups based on the number of records in descending

order, and return the first record.
(5) Return the airport name.
The step-by-step SQL explanation gives Alice a high-level under-

standing of the generated SQL query. She roughly understands the
purpose of the first query is to find the most popular destination,
and the purpose of the second query is to find the airport with the
most flights to this destination (hyperlinked blue text in Step 2).

However, Alice is unsure about what kind of code is associated
with “airport code” in Step 3 of the second query. Thus, she wants
to see some actual data in the database. However, when she tries
to locate the related data in the database, she notices there are
many tables and some tables even include hundreds of columns.
She does not want to do this manually. Instead, Alice hovers her
mouse over the highlighted text “airport code” in this step. The
database panel automatically switches to the table that includes
“airport code”, centering and highlighting data in this column in
yellow. After reviewing the data in the database, Alice confirms
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that the airport code is a unique identifier used when booking a
flight. She is confident this step has no issue.

Alice is curious about the difference between Table “flight” and
Table “travel” in Step 1 of the first query, so she hovers the mouse
over these two entities respectively. By moving the mouse between
them, the corresponding tables are being switched accordingly.
Alice clearly notices why these two tables need to be merged. This
is because “month” is stored in the Table “flight”, while “destination”
is stored in Table “travel”.

Since Alice is not familiar with SQL, she still does not understand
how these two tables are merged in this step. Therefore, she clicks
on this step to view the intermediate result. The intermediate result
shows a combined table with columns from the “flight” table and
the “travel” table. Alice checked a few data records in the merged
table and compared them with the original records in these two
tables to confirm that they were indeed consistent.

As Alice reads individual steps in the SQL explanation, she no-
tices that Step 2 of the first query is wrong. It seems SQLucid
misinterpreted the meaning of “the first quarter” as “January”, and
it also ignored the year constraint. Instead of rephrasing her original
question, Alice modifies the description of Step 2 in the first query
by explicitly specifying the beginning and ending months. She then
adds a new step below to instruct the system to only consider data
in Year 2022. Below is the modified SQL explanation.
Start the first query
(1) Merge data in table flight and table travel.
(2) Keep the records where month is

[January]→ [between January and March]. (Updated)
+ (3) Make sure the year in 2022. (Added)
(4) Split the data into groups based on the destination.
(5) Sort the groups based on the number of records in descending

order, and return the first record.
(6) Return the destination.

Start the second query
(1) In table travel.
(2) Keep the records where the destination is the result of the

first query.
(3) Split the data into groups based on the airport code.
(4) Sort the groups based on the number of records in descending

order, and return the first record.
(5) Return the airport name.
Then Alice clicks on the Generate button to update the query.

She receives a new airport name and a new SQL explanation. By
checking the explanation and the intermediate results again, Alice
is convinced that the result is correct and exactly what she needs.

6 USER STUDY I: COMPARISON WITH OTHER

INTERACTIVE APPROACHES

To investigate the usability of the holistic system, we conducted
a within-subjects user study with 30 participants in comparison
to two representative interactive systems, MISP [81] and DIY [54].
To ensure a fair comparison, we have redesigned the front-end
user interfaces of MISP and DIY following the same design style as
SQLucid (detailed in Appendix C). Furthermore, we have replaced

the original SQL generation model in MISP and DIY with the same
SQL generation model used in SQLucid. In this way, we normalize
the impact of the visual appearance and also the underlying models
on user performance in the comparison.

6.1 Participants

We recruited participants through the mailing lists in an R1 uni-
versity. To investigate the impact of user expertise on SQLucid,
we selected participants with three different levels of familiarity
with SQL. In total, we recruited 30 participants. 15 of them had
never heard about or used SQL before (end-user); 10 knew the basics
of SQL but had to search online to recall syntax details (novice);
5 could fluently write SQL queries (expert). 14 participants were
undergraduate students, 4 were master’s students, and 12 were PhD
students. We shared the consent form in the recruitment email and
obtained their consent before each study. Each participant received
a $25 gift card as compensation for their time.

6.2 Comparison Baselines

MISP [81] and DIY [54] are two state-of-the-art interactive ap-
proaches for SQL generation. They adopt two typical mechanisms,
question-answering and direct manipulation.

MISP uses a question-answering interaction mechanism, where
users clarify ambiguities through multiple-choice questions. To
enable fair comparison, we created a graphical interface for MISP
similar to SQLucid, excluding the Query Explanation view (Figure 3
D○), and used the same text-to-SQL model [60] as SQLucid.
DIY employs direct manipulation, allowing users to correct map-

pings between SQL tokens and natural language phrases using
drop-down menus. We adapted the replication from Ning et al. [55]
with a SQLucid-like interface and the same underlying model [60].

Appendix C provides details and screenshots of baseline UIs.

6.3 Tasks

We performed stratified random sampling on a widely used text-to-
SQL benchmark, Spider [83], to create a pool of 48 tasks. This task
pool includes 12 easy tasks, 12 medium tasks, 12 hard tasks, and
12 extra hard tasks, according to the difficulty classification from
Spider. Table 6 in the Appendix show 12 representative tasks.

6.4 Protocol

Each study consisted of three sessions, one for each tool. We ran-
domized the order of assigned tools to mitigate learning effects.
Each session starts with participants watching a tutorial video about
the assigned tool. Then participants were given several minutes
to practice and get familiar with the tool before working on real
tasks. Once they were done practicing, participants were given 10
minutes to complete 8 assigned SQL tasks using the designated tool.
Specifically, we selected 2 tasks per difficulty level from the pool of
48 tasks. We randomized the order of the 8 tasks in each session to
counterbalance the impact of task difficulty levels (e.g., doing easy
tasks first vs. doing difficult tasks first). If a participant found a task
too difficult to solve, they were allowed to skip it. For each task,
participants were asked to first read the task description and then
ask an initial natural language question to the assigned tool. After
receiving the generated query and the query result, the participant
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could further validate and correct the generated query using the
interaction mechanisms provided by the tool.

At the end of each session, participants were asked to complete
a post-task survey to share their experiences. The survey included
the NASA Task Load Index (TLX) questions [25] and several 7-
point Likert-scale questions to rate their perception of the assigned
tool. After all sessions, participants completed a final survey, in
which they directly compared all the tools and shared their over-
all thoughts about the usefulness of the tools. We recorded each
study with the permission of the participants. Participation took 79
minutes overall on average.

6.5 User Performance

Figure 7: Distribution of correctly completed, incorrectly

completed, skipped, remaining tasks (Study 1)

Table 1: Task Completion Accuracy (Study 1).

Task completion accuracy SD

MISP [81] 56% 30%
DIY [54] 67% 20%
SQLucid 85% 13%

Task Completion Rate. Figure 7 shows the distribution of com-
pleted, correct, skipped, and remaining (i.e., tasks that were not
even tried due to the time limit) tasks when using different tools. An
ANOVA test showed that the mean differences among the number
of completed tasks, correct completion, skipped tasks, and remain-
ing tasks when using different tools are all statistically significant
(𝑝-value = 1.75e-16, 7.99e-25, 7.62e-6, 1.21e-2 respectively).

Specifically, participants using SQLucid completed 6.6 out of 8
tasks, while participants using MISP and DIY completed 3.0 and 5.4
tasks respectively. This result suggests that SQLucid can accelerate
the speed of task completion. Furthermore, when using SQLucid,
participants skipped only 4% of the tasks, compared with 10% when
using DIY and 19%when usingMISP. This implies that SQLucid can
provide more effective support to help participants make progress
on challenging tasks, leading to fewer skipped tasks.

To measure the correctness of completed tasks, we calculate the
task completion accuracy—the number of correctly completed tasks
divided by all completed tasks, excluding skipped tasks and remain-
ing tasks. Table 1 shows the result. Participants using SQLucid also
achieved the highest task completion accuracy, 85%. In contrast,
participants using MISP and DIY only achieved 56% and 67% accu-
racy, respectively. In other words, in 44% and 33% completed tasks,
participants using MISP and DIY thought they had arrived at a

correct query when in fact, the query was still wrong. These results
imply that SQLucid can significantly improve user productivity
when querying databases and help them effectively recognize query
errors and generate correct queries with high accuracy.
Utility Rates of Different Features. To better understand the
utility of different features, we analyzed recordings and gathered
utility rates of features. For each task, participants intentionally
navigated data by checking the visual correspondence 10.2 times.
Participants rendered the intermediate results 3.5 times. In 48%
of assigned tasks, SQLucid generated the correct query in the
first iteration and participants did not edit the SQL explanation. In
47% of assigned tasks, SQLucid generated a wrong query in the
first iteration, and it took 1.8 edits to fix. In 5% of assigned tasks,
participants either rephrased the question or skipped the task.

These values show that participants heavily rely on visual corre-
spondence and the intermediate results to understand the query.
With these features, participants can quickly identify and success-
fully fix errors with only a few edits per task, improving the initial
query generation accuracy from 48% to 85%. We also analyzed the
recordings of participants using DIY and MISP. We found that DIY
andMISP generated the initial query correctly in 48% and 51% of the
assigned tasks. However, due to the limitation of their interaction
methods, participants could not effectively understand the gener-
ated query and only fixed a limited number of queries, resulting in
a 56% and 67% final accuracy, respectively.

The Impact of User Expertise. Table 2 shows the number of
correctly completed tasks for participants with different levels of
expertise. Overall, compared with MISP and DIY, SQLucid con-
sistently improved the task completion correctness and efficiency
across all levels of SQL expertise. Specifically, the performance gap
between different expertise levels when using SQLucid is narrow.
An ANOVA test showed that when using SQLucid, there is no sta-
tistically significant difference in the number of correctly completed
tasks between different levels of SQL expertise (𝑝-value=0.88). This
implies that SQLucid can help bridge the expertise gap among
users when querying databases.

Table 2: Correctly completed tasks by expertise level

MISP [81] DIY [54] SQLucid

#Corr. SD #Corr. SD #Corr. SD

End-User 1.6 0.91 3.3 1.13 5.4 0.91
Novice 1.4 0.67 3.5 1.27 5.7 1.06
Expert 2.2 1.10 3.8 1.30 5.9 1.22

The Impact of Task Difficulty Levels. Table 3 shows the number
of correctly completed tasks at different levels of difficulty when
using different tools. Overall, compared with MISP and DIY, SQLu-
cid consistently improved the task completion correctness and
efficiency across all levels of task difficulty. In particular, SQLucid
significantly improves user performance on hard and extra-hard
tasks. Compared with using MISP, participants using SQLucid com-
pleted almost 9X and 3X more extra-hard tasks correctly compared
with using MISP and DIY. P10 wrote, “I really enjoyed [SQLucid]

a lot better than the previous two. I can use it to answer complex



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yuan Tian, Jonathan K. Kummerfeld, Toby Jia-Jun Li, and Tianyi Zhang

questions. Sometimes the system made a mistake at the first step, but

I can easily correct it or add more constraints.”

Table 3: Correctly completed tasks by difficulty level

MISP [81] DIY [54] SQLucid

#Corr. SD #Corr. SD #Corr. SD

Easy 0.81 0.74 1.40 0.69 1.62 0.50
Medium 0.49 0.62 1.19 0.72 1.48 0.60
Hard 0.21 0.51 0.54 0.61 1.39 0.58
Extra hard 0.12 0.31 0.35 0.63 1.14 0.66

6.6 User Confidence and Cognitive Load

In the post-task survey, participants self-reported their confidence
about generated queries when using different tools on a 7-point
scale. Figure 8 shows the distribution of users’ confidence levels.
The average confidence level is 6.42 when using SQLucid, com-
pared with 3.79 and 5.29 when using MISP and DIY. An ANOVA
test showed that the mean differences are statistically significant (𝑝-
value = 1.53e-11). Based on a qualitative analysis of user responses,
we believe this improvement was largely attributed to the visual
correspondence and intermediate features provided by SQLucid.
P23 wrote, “I felt most confident using SQLucid because it provided

the most information on how a natural language query was inter-

preted and carried out. For example, I could see intermediate results

and explanations of steps in natural language, allowing me to easily

gauge whether the process was correct or not.” P9 reported, “When

I was trying to explore the data for the other two tools, it was a bit

challenging. But with related tables and data highlighted w.r.t. the

explanations made it easier to navigate the data.”
Figure 9 shows participants’ ratings on the five cognitive load

factors from the NASA TLX questionnaire [25]. The ANOVA test
demonstrates that the mean differences are all statistically signifi-
cant (𝑝-value=8.26e-4, 7.83e-06, 6.04e-13, 2.57e-06, 8.10e-08 respec-
tively). The result confirms that SQLucid can reduce users’ cog-
nitive load by creating interactive SQL explanations with visual
correspondence and intermediate results, which serves as a com-
mon ground between users and the database. P19 wrote a compre-
hensive comment to illustrate the convenience provided by SQLu-
cid—“SQLucid helps me query the database and debug my query

completely with natural language, which is good because I do not

know SQL. The intermediate results help me locate bugs easily, so

I don’t need to debug my entire query. The natural language inter-

preter is so flexible that I do not need to change my writing style to

accommodate it. All inferences are performed on the database level,

so I don’t need to specify which table I should look into. The highlight

feature also helps me navigate the database.”
6.7 User Ratings of Individual Features

In the post-task survey, we prepared six 7-point Likert scale ques-
tions for participants to rate the usefulness of key features in SQLu-
cid. The most appreciated features were being able to understand the
SQL query via the step-by-step explanation and being able to directly
edit the explanation in natural language to fix an error. Other features
in SQLucid ere also appreciated by the majority of participants.
More discussion is detailed in Appendix A.

Figure 8: User Confidence Ratings (Study 1)

Figure 9: NASA Task Load Index Ratings (Study 1)

6.8 User Preference and Feedback

When asked about the tool they preferred to use for their real-world
data query needs, all 30 participants selected SQLucid. We coded
participants’ responses in the post-study survey and identified two
main reasons why they liked SQLucid more. First, 27 participants
mentioned that the explanations provided by SQLucid were more
understandable and useful. Particularly, the visual correspondence
and intermediate result features bring more interactivity in SQLu-
cid, and greatly enhance users’ ability to identify errors.

Second, 21 participants pointed out that SQLucid is the most
useful among all conditions because the direct editing of SQL expla-
nations in NL is more convenient and requires less effort. P23 wrote,
“SQLucid was the most usable because I felt that it was very easy and

fast to correct mistakes in interpretation using this tool. For example,

I could directly use language to edit some of the intermediate steps to

get the correct order of steps. I think this is fast and convenient. ”
In the post-task survey, we also asked participants what addi-

tional features may help them better solve the task. Seven partici-
pants mentioned that it would be helpful to see confidence scores
associated with each step, because they can pay more attention
to those steps with lower confidence. P1 wrote, “I wish to see a

confidence score that indicates if I need to check or debug something. ”
Furthermore, three participants mentioned they would like to see
some suggestions when editing the SQL explanation. P11 suggested
that “providing suggested expressions may diminish the chances for

the normal language question to be misinterpreted.” Finally, two par-
ticipants mentioned that it might be useful for SQLucid to generate
multiple answers and let the user choose one.

7 USER STUDY II: ABLATION STUDY OF KEY

FEATURES IN SQLUCID

To investigate the effectiveness of each feature in SQLucid, we
conducted another within-subjects user study with 8 participants,
comparing SQLucid with three of its variants.
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7.1 Participants, Baselines, Tasks and Protocol

We followed the same procedure as Study 1 to recruit 8 participants
for this study. 4 of them had never heard about or used SQL before
(end-user); 2 knew the basics of SQL but had to search online to
recall details of the syntax when writing a SQL query (novice); 2
could fluently write SQL queries (expert).

We created three different variants of SQLucid as comparison
baselines by ablating the two key features: (1) no visual correspon-
dence, (2) no intermediate results, (3) no visual correspondence &
no intermediate results (i.e., Text SQL explanation only).

In this study, we used the same tasks (Section 6.3) and followed
the same protocol (Section 6.4) as the first user study. On average,
each study took about 61 minutes in total.

Figure 10: Distribution of correctly completed, incorrectly

completed, skipped, remaining tasks when using different

versions of SQLucid (Study 2)

7.2 User Performance

Figure 10 shows the distribution of completed tasks, correct tasks,
skipped tasks, and remaining tasks. Table 4 shows the task comple-
tion accuracy similar to user study 1. An ANOVA test showed that
the mean differences among these values are statistically signifi-
cant, except for skipped tasks (𝑝-value = 2.12e-02, 3.36e-02, 3.3e-01,
1.03e-03, 1.21e-2 respectively).

Specifically, when the SQL explanation is plain text, participants
completed 4.9 out of 8 tasks with a completion accuracy of 81.6%,
and skipped 0.75 out of 8 tasks. When the visual correspondence fea-
ture is activated, participants completed 5.5 tasks with a completion
accuracy of 83.1% and skipped 0.375 tasks. When the intermediate

query result feature is activated, participants completed 5.9 tasks
with a completion accuracy of 83.5% and skipped 0.375 tasks. When
both features were activated, participants completed 6.4 tasks with
a completion accuracy of 84.3% and skipped 0.25 tasks. The result
implies both the two features can reduce task completion time and
increase user performance.

Table 4: Task Completion Accuracy (Study 2).

Task completion accuracy SD

Text Explanation Only 81.6% 7.9%
+Visual 83.1% 16.3%
+Intermediate 83.5% 11.9%
+Visual+Intermediate 84.3% 8%

Figure 11: User Confidence Ratings (Study 2)

Figure 12: NASA Task Load Index Ratings (Study 2)

7.3 User Confidence and Cognitive Load

Figure 11 shows the participants’ confidence with different tools.
An ANOVA test shows that the mean differences across different
conditions are statistically significant (𝑝-value=1.32e-12). Figure 12
shows user ratings on the five cognitive load factors from the NASA
TLX questionnaire. AnANOVA test shows that themean differences
in all five dimensions are statistically significant (𝑝-value=1.65e-05,
2.71e-06, 1.14e-16, 7.34e-07, 2.53e-09 respectively). Participants us-
ing SQLucid with all features activated have the lowest cognitive
load and highest confidence. The result shows both the visual cor-
respondence feature and the intermediate query result feature serve
as great supplements to the plain SQL explanations.

We analyzed the post-study survey responses and found that
these two features contributed to different aspects of user perfor-
mance. Specifically, the visual correspondence feature aids in data
navigation, thereby saving more time. P1 wrote, “[Without visual

correspondence,] I need to use the scrolling bar a lot. That is annoying

and tedious.” On the other hand, the intermediate query result fea-
ture focuses on improving user comprehension of the explanation,
which brings more confidence. P4 wrote, “Intermediate results give

me confidence about the final outcome.” Additionally, this feature
provides information that users may not have asked for, but can
offer additional context, thereby reducing their cognitive load. P1
commented, “Intermediate steps can help me check back and forth

based on my needs. Without this feature, I only get a piece of infor-

mation. If I want to know more, I need to ask multiple times.”
Overall, features in SQLucid complement each other and collab-

oratively enhance the interactivity of SQL explanations. P2 made a
comprehensive comment about the variant with only plain textual
explanation, “Without these features, my interest in using this system

decreases a lot, because I need to find the data by my eyes and the

mouse. Although it explains the procedure in English and provides

the final result, I can’t see the relationship between the sentences and

the real data. Without seeing the relationship, it might be correct, but
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I question my understanding and do not trust it. Besides, sometimes

when my request is too complex for the system to handle, I don’t know

which step is wrong.”

8 QUANTITATIVE EVALUATION

To evaluate the generalizability of SQLucid , we further conducted
a quantitative experiment where the first author completed 100
database query tasks. The results of this study can be interpreted
as the upper bound of user performance of SQLucid.

We followed the same sampling strategy in the user studies,
including 25 easy tasks, 25 medium tasks, 25 hard tasks, and 25 extra
hard tasks from Spider [83]. For each task, the first author examined
the database, read the natural language description, and tried to
solve the task using SQLucid. The task was considered completed
when a correct query result was obtained. This simulates an ideal
condition where a user is familiar with the tool and has sufficient
knowledge of database queries. This case study is to investigate
to what extent SQLucid can solve query tasks, regardless of its
learnability or usability.

The experimenter completed all 100 tasks with an accuracy of
89%, in an average of 1.9 minutes (median=0.9, SD=0.6) for each
task. Table 5 shows the task completion accuracy at different lev-
els of task difficulty. 5 out of 100 tasks were failed due to user
misunderstanding. For example, while the correct SQL for "French
citizens" should be “Citizenship = France” according to the
data in the database, the query produced by the experimenter had
“Citizenship = French”. It is possible that additional affordances
that proactively provide information about matches with content
in the database could address these issues. 4 out of 100 tasks failed
to be completed due to the complex query structure, e.g., a query
with multiple subqueries. The experimenter decided to skip them
because they were time-consuming to solve.

Table 5: Task completion at different levels of task difficulty

Easy Medium Hard Extra hard Overall

Accuracy 96% 96% 76% 88% 89%

9 DISCUSSION

9.1 Design Implications

Based on the evaluation results, we found that the primary enabler
for SQLucid lies in the bi-directional, natural language (NL) com-
munication channel it establishes between human users and SQL
generation models. Compared to directly editing and refining the
original question (i.e., prompt engineering), editing the step-by-step
explanations provides a more structured way to give feedback and
allows users to pinpoint the error. Furthermore, by breaking down
a lengthy explanation into shorter descriptions of individual steps,
SQLucid can clearly and systematically explain the behavior of a
query. The editability of these explanations allows human users to
identify the specific step where an error occurs and directly pro-
pose a correction by altering the NL description of the erroneous
step. This design enables users to offer more precise feedback and
incrementally build a complex query than they could by providing

high-level suggestions in a multi-turn dialogue (e.g., MISP [81],
ChatGPT), thereby streamlining the SQL regeneration process.

The success of SQLucid also echoes the grounding theory in
communication [12]. Grounding theory states that conversation
is a collaborative effort aimed at establishing common ground or
shared knowledge. In interactions with intelligent systems, such
as SQL generation models, the system should offer evidence of
understanding in response to a user’s input, enabling the user to
assess progress toward their goal. In our work, the editable step-by-
step explanation serves as the common ground for communication
between an SQL generation model and a human user—the model

explains a generated query step by step, while the human user corrects

the model’s misinterpretation by directly editing the explanation.

Furthermore, both the visual correspondence and the intermediate
query result features further enhance the grounding.

Our work further illustrates that comprehending system behav-
ior and repairing system breakdowns are highly interdependent
activities. This is in line with previous studies of conversational
agents [2, 6], which argue that users must first understand the cur-
rent state of the system and the cause of a breakdown to choose an
effective repair strategy. By providing a detailed explanation with
intermediate results, SQLucid enables users to rapidly grasp the
query’s behavior and identify the root cause of an incorrect query
result. This helps users to efficiently pinpoint the erroneous part
of the query and give accurate and effective suggestions to fix it.
Additionally, this design offers users greater flexibility in express-
ing their intent and feedback compared to relying on constrained
mechanisms to gather feedback [29, 42, 46, 54, 81].

9.2 Using Interactive Explanation for Task

Decomposition

Task decomposition is a long-standing challenge in program syn-
thesis and code generation [23, 31, 39, 71]. Several approaches
support task decomposition by asking users to specify intermedi-
ate steps [27, 33, 82]. For instance, Wranger [33] recommends a
ranked list of operators at each synthesis step and asks users to
select which operator to use and fill in the parameters. Using such
systems requires users to be familiar with the underlying program-
ming language and also actively think about intermediate steps to
arrive at the final solution. Prior work shows that non-experts often
find it difficult to decompose a complex task into sub-tasks [39].

The editable step-by-step explanation can serve as a scaffold to
guide non-experts to decompose a complex task. Compared with
prior work, SQLucid does not require users to actively make a
task decomposition plan. Instead, the step-by-step explanation can
be viewed as an initial decomposition plan proposed by SQLucid.
Users only need to read and correct it. In particular, the step-by-step
structure of the explanation will spontaneously inspire users to
think about the intermediate steps and make it easier to recognize
incorrect or missing steps. Since the explanation is communicated
in natural language, users also do not need to know the semantics
of the underlying programming language.

As we were developing this system, the rise of Large Language
Models (LLMs) has brought another possibility for task decom-
position. Recent studies have shown that LLMs are capable of
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breaking down a large task into smaller subtasks with proper in-
structions [32, 57, 67, 73, 75]. For instance, Chain-of-Thought (CoT)
Prompting [75] allows users to provide several examples of how
to solve a problem analytically step by step and leverages the in-
context learning capability of LLMs to decompose similar problems.
Given a natural language query, one can use CoT to decompose
it and generate a step-by-step plan with basic query operations.
However, one caveat is that LLMs may hallucinate and generate an
incoherent plan with non-sensical steps, as shown by many stud-
ies [38, 79]. In contrast, our grammar-based explanation method is
strictly grounded in the SQL components and provides a faithful
representation of computation steps in a query. We also provide
a dedicated method to incorporate user refinement on individual
steps to fix query generation errors.

9.3 Application to Other Domains

We believe that our interface design can be generalized to adja-
cent domains, such as enabling user validation and repair in code
generation [11, 27], data transformation synthesis [15, 51], web
automation [9, 40], smartphone app automation [44, 45], and reg-
ular expression synthesis [87]. Programs in these domains can be
naturally decomposed into smaller components (e.g., program state-
ments, API calls) and then explained in natural language in a similar
step-by-step fashion. However, for certain domains such as tensor
transformation synthesis [88], step-by-step explanations may not
be the most suitable approach, as code in these areas often involves
complex concepts and computation steps, such as linear algebra,
which are challenging to clearly explain in natural language.

9.4 SQL Experts vs. Non-Expert Users

SQLucid is specifically designed for non-experts who need to inter-
act with databases but lack SQL expertise. Reading NL descriptions
and checking intermediate results is the main way for non-experts
to validate SQL queries. Our analysis of user performance across
varying SQL expertise levels reveals that the performance gap be-
tween end-users, novices, and experts has been substantially re-
duced when utilizing SQLucid. Our user study results show adding
and removing NL steps are intuitive for non-experts. Users can
freely edit the NL description of a query step and SQLucid up-
dating the corresponding SQL component accordingly based on a
text-to-clause model. If one step (e.g., group students into clusters
by years) is missing in a query (e.g., compute the average GPA
of students for each year), it is easy to recognize it from the NL
description and the results.

While our focus was on non-experts, we discovered that SQLu-
cid can also enhance the productivity of SQL experts. For complex
tasks that necessitate joining multiple tables or creating compound
queries, SQLucid offers a solid starting point from which SQL
experts can iteratively and incrementally refine the query. For ex-
ample, users can build two simple subqueries respectively and
reference one within the other to form a more complex query.

Another unintended benefit was that participants in our study
found SQLucid to be valuable for learning SQL. Five participants
who were unfamiliar with SQL actively reported that their ability
to read basic SQL queries improved as a result of using SQLucid,
and they expressed a desire to continue using it for practical SQL

learning. Participant P12 commented, “It was nice to see the generated
SQL code with human language. I believe I could learn SQL using this

tool.” Similarly, P24 stated, “I wish SQLucid can be made available

as a website. It can be used to teach beginners SQL knowledge and I

believe they are willing to pay for it.”

9.5 Limitation and Future Directions

There are several limitations in the design of our user study. First,
although our participants represented a wide range of expertise lev-
els in SQL, they were all university students. In the future, we plan
to recruit industrial practitioners to study the real-world adoption
and ecological validity of SQLucid. We will also conduct semi-
structured interviews and surveys to gather feedback from indus-
trial practitioners. Second, we did not explicitly measure user per-
ception of accuracy, but user confidence is a useful proxy for it.
Figure 8 shows a significant improvement in the confidence of
SQLucid compared to DIY and MISP. Figure 11 shows each key
feature in SQLucid contributes to increase user confidence.

The current design of SQLucid offers room for further improve-
ment. First, to further enhance its educational potential, SQLucid
can establish a triple-linkage among the SQL statement, SQL expla-
nation, and corresponding database content. Combined with the
intermediate query results, this can serve as a promising learning
tool for SQL beginners to understand both the syntax and semantics
of SQL queries. Furthermore, as suggested by several participants,
SQLucid can benefit from displaying more information about the
SQL generation process, such as model confidence scores. This
additional information could direct users’ attention and help them
determine which steps of the query they should prioritize. Another
future direction could focus on automatically reordering edited
steps. SQLucid currently assumes users know exactly where to add
new steps. Supporting automatic step reordering can eliminate this
assumption.

10 CONCLUSION

This paper presented SQLucid, a novel interactive SQL refinement
interface that enables users to effectively query data from relational
databases using natural language. SQLucid integrates editable ex-
planation, visual correspondence, intermediate query results, and
other auxiliary features. These features echoed with each other, cre-
ating a grounded natural language interface with rich interactions
for users to understand the generated queries, identify errors, and
correct any errors. A user study with 30 participants shows that
SQLucid can help users query data more quickly and accurately,
with increased confidence and reduced cognitive load. A user study
with 8 participants demonstrates the effectiveness of key features in
SQLucid. A quantitative experiment with 100 query tasks indicates
that SQLucid can be generalized to various tasks.
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A USER RATINGS OF INDIVIDUAL FEATURES

In the post-task survey, participants rated the usefulness of key
features of SQLucid in 7-point Likert scale questions. Figure 13
summarizes the distribution of user ratings.

We found that the majority of participants were satisfied with
each feature in SQLucid. The most appreciated features were being
able to understand the SQL query via the step-by-step explanation

and being able to directly edit the explanation in natural language

to fix an error. P10 wrote, “I really enjoyed this tool [SQLucid] a lot

better than the previous two. Doing everything in natural language

is way more direct. I don’t have to answer strange questions or click

confusing options [in drop-down menus]...By editing the steps, I was

able to get more answers than previous tools.”
Furthermore, 30 participants agreed or strongly agreed that “see-

ing the intermediate execution results helps me understand the SQL

query and validate its correctness.” P23 commented, “I liked how

intermediate steps and results were shown so users could see how the

system interpreted the query.” 29 participants agreed or strongly
agreed that “seeing the highlighted tables/columns helps me under-

stand the NL description.” P5 wrote, “the highlighting feature is useful
for users to locate the corresponding elements quickly.” Even the least
appreciated feature—the edit history of SQL explanations—was still
considered convenient by the majority of participants (25/30). P14
wrote, “I also liked how easy it was to go in and edit the query as well

as go back if I made a mistake.”

B USER STUDY TASKS

Table 6 present examples of taskswith different difficulty levels from
the 48 tasks used in our study. Table 6 also render the databases
these tasks were operated on, as well as the ground-truth SQL
queries for these tasks. These tasks were selected from the Spider
benchmark [83]. Spider is a large-scale, complex, and cross-domain
benchmark, consisting of databases with multiple tables. It has
become the de facto standard for measuring text-to-SQL models
these days. Spider categorizes these tasks into four difficulty levels—
easy, medium, hard, and extra hard. We performed a stratified
random sampling on the tasks from Spider [83]. Specifically, we
selected 12 easy tasks, 12 medium tasks, 12 hard tasks, and 12 extra
hard tasks, according to the difficulty classification from Spider. For
each participant and each tool/variant assignment during the study,
we randomly selected 2 tasks per difficulty level from the pool of
48 tasks, resulting in 8 tasks per condition. We randomized the
order of the 8 tasks to counterbalance the impact of task difficulty
levels (e.g., doing easy tasks first vs. doing difficult tasks first). If a
participant found a task too difficult to solve, they were allowed to
skip it.

C USER INTERFACES OF SQLUCID AND

BASELINES

This section demonstrates the user interface (UI) of baseline tools
used in our user study I.

MISP. Given a natural language question, MISP may ask users
multiple-choice questions to clarify which column should be con-
sidered. If none of the listed choices are correct, users are allowed
to provide their own answers. The user’s answer is used to con-
strain the decoding process by adjusting the probability of code
tokens induced by the answer. However, MISP directly renders the
generated SQL to users without explanation. Therefore, users need
to be familiar with SQL syntax to identify errors. The official imple-
mentation of MISP on GitHub only had a command-line interface,
and the original text-to-SQL model [86] had much lower accuracy
than newer models. To enable a fair comparison, we first created an
interface for MISP, which includes everything from the SQLucid
interface except the Query Explanation view (Figure 3 D○). Then,
we replaced their text-to-SQL model [86] with the one [60] used in
SQLucid. Thus, the only difference between the two systems is the
interaction mechanism.

https://aclanthology.org/J82-3002
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/D18-1112
https://doi.org/10.18653/v1/D18-1112
https://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://arxiv.org/abs/2305.11499
https://doi.org/10.1145/3133887
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D19-1537


SQLucid: Grounding Natural Language DatabaseQueries with Interactive Explanations UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 13: User ratings on individual features (1—strong disagreement, 7—strong agreement)

As shown in Figure 14, MISP shares a similar UI as SQLucid
(Figure 3). For each query task, MISP allows users to select a data-
base, inspect data in a table, and view the query result. The main
difference from SQLucid is that MISP will render a generated query
in the dialog and ask users to confirm whether the generated SQL
is correct or not. If the user says the generated query is not correct,
MISP will proactively predict the erroneous part and ask users to
select alternative generations to fix the error. However, MISP does
not provide a natural language explanation of the generated SQL.
Users have to read and inspect the generated SQL in the dialog on
their own, which is difficult for end-users who do not understand
the syntax and semantics of SQL.

DIY. Given a natural language question, DIY creates a small
sampled database and computes intermediate results on the sam-
ples. Furthermore, DIY maps tokens in a generated SQL query to
words and phrases in the user-provided question. If the user finds
an incorrect mapping (e.g., a wrong column name), they can fix
it by selecting an alternative name and value from a drop-down
menu. However, users cannot give further feedback in addition to

selecting alternatives at certain locations. Since the original imple-
mentation of DIY is not publicly available, we reused the replication
of DIY from Ning et al. [55] and designed a user interface similar to
SQLucid. We also changed the original text-to-SQL model in Ning
et al.’s implementation to the same model [60] of SQLucid for a
fair comparison.

Figure 15 shows the UI of DIY. DIY only samples a small amount
of data from a user-selected database to reduce the information
overload of inspecting a large database. Users can type in a natural
language question and then DIY generates a SQL query by invoking
the base SQL generation model. DIY automatically matches tokens
in the natural language question with tokens in the generated SQL.
Each matched natural language token is augmented with a drop-
down menu with alternative SQL tokens predicted by the base
model. If the prediction of a token is wrong, users can click on the
drop-down menu and select an alternative token to fix it. Users
can examine the query result, as well as the execution steps, in the
bottom right view.
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Table 6: Some example tasks in the user study

Task Ground truth SQL query

Easy

List the name of teachers whose hometown
is not “Little Lever Urban District.
(course_teach)

SELECT name FROM teacher
WHERE hometown != “little lever urban district”

What is the abbreviation
for airline “JetBlue Airways” ?
(flight_2)

SELECT Abbreviation FROM AIRLINES
WHERE Airline = “JetBlue Airways”

List all the student details in
reversed lexicographical order.
(student_transcripts_tracking)

SELECT other_student_details FROM Students
ORDER BY other_student_details DESC

Medium

Which airlines have less than 200 flights?
(flights_2)

SELECT T1.Airline FROM AIRLINES AS T1
JOIN FLIGHTS AS T2 ON T1.uid = T2.Airline
GROUP BY T1.Airline HAVING COUNT(*) 200

Who is the earliest graduate of the school?
List the first name, middle name, and last name.
(flights_2)

SELECT first_name , middle_name , last_name
FROM Students ORDER BY date_left ASC LIMIT 1

What are the countries having
at least one car maker?
List name and id.
(car_1)

SELECT T1.CountryName , T1.CountryId
FROM COUNTRIES
AS T1 JOIN CAR_MAKERS AS T2
ON T1.CountryId = T2.Country
GROUP BY T1.CountryId HAVING COUNT(*) = 1

Hard

What are the ids and names of the
battles that led to more than 10
people killed in total?
(battle_death)

SELECT T1.id , T1.name FROM battle AS T1
JOIN ship AS T2 ON T1.id = T2.lost_in_battle
JOIN death AS T3 ON T2.id = T3.caused_by_ship_id
GROUP BY T1.id HAVING SUM(T3.killed) 10

What is the maximum number of times that
a course shows up in different transcripts
and what is that course’s enrollment id?
(student_transcripts_tracking)

SELECT COUNT(*) , student_course_id
FROM Transcript_Contents
GROUP BY student_course_id
ORDER BY COUNT(*) DESC LIMIT 1

What are the first names of the students who
live in Haiti permanently or have the cell
phone number 09700166582?
(student_transcripts_tracking)

SELECT T1.first_name FROM students AS T1
JOIN addresses AS t2
ON T1.permanent_address_id = T2.address_id
WHERE T2.country = ’haiti’
OR T1.cell_mobile_number = ’09700166582’

Extra

hard

Which owner has paid the largest
amount of money in total for their dogs?
Show the owner id and zip code.
(dog_kennels)

SELECT T1.owner_id , T1.zip_code FROM Owners AS T1 JOIN Dogs
AS T2 ON T1.owner_id = T2.owner_id JOIN Treatments AS T3
ON T2.dog_id = T3.dog_id
GROUP BY T1.owner_id
ORDER BY sum(T3.cost_of_treatment) DESC LIMIT 1

What is the area code in which the most
voters voted?
(voter_1)

SELECT T1.area_code FROM area_code_state AS T1
JOIN votes AS T2 ON T1.state = T2.state
GROUP BY T1.area_code
ORDER BY COUNT(*) DESC LIMIT 1

What is the maximum horsepower and the
make of the car models with 3 cylinders?
(car_1)

SELECT T2.horsepower , T1.Make FROM CAR_NAMES AS T1
JOIN CARS_DATA AS T2 ON T1.MakeId = T2.Id WHERE T2.cylinders = 3
ORDER BY T2.horsepower DESC LIMIT 1
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Figure 14: The UI of MISP
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Figure 15: The UI of DIY
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