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ABSTRACT
Cyber-Physical Systems (CPS) have been broadly deployed in safety-

critical domains, such as automotive systems, avionics, medical

devices, etc. In recent years, Artificial Intelligence (AI) has been

increasingly adopted to control CPS. Despite the popularity of AI-

enabled CPS, few benchmarks are publicly available. There is also

a lack of deep understanding on the performance and reliability of

AI-enabled CPS across different industrial domains. To bridge this

gap, we present a public benchmark of industry-level CPS in seven

domains and build AI controllers for them via state-of-the-art deep
reinforcement learning (DRL) methods. Based on that, we further

perform a systematic evaluation of these AI-enabled systems with

their traditional counterparts to identify current challenges and

future opportunities. Our key findings include (1) AI controllers

do not always outperform traditional controllers, (2) existing CPS

testing techniques (falsification, specifically) fall short of analyzing

AI-enabled CPS, and (3) building a hybrid system that strategically

combines and switches between AI controllers and traditional con-

trollers can achieve better performance across different domains.

Our results highlight the need for new testing techniques for AI-

enabled CPS and the need for more investigations into hybrid CPS

to achieve optimal performance and reliability. Our benchmark,

code, detailed evaluation results, and experiment scripts are avail-

able on https://sites.google.com/view/ai-cps-benchmark.
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1 INTRODUCTION
Cyber-Physical Systems (CPS) refer to the combination of mechan-

ical and computer systems, in which computer systems actively

monitor and control the behavior of mechanical systems accord-

ing to system states and external environments. The integration

of computer systems significantly improves the performance of

mechanical systems. Nowadays, CPS have been widely deployed

in diverse industrial domains, such as automotive systems, energy

control, avionics, medical devices, etc.
With recent advances in Artificial Intelligence (AI), there has

been increasing demand, from both industry and academia, in en-

hancing or even replacing traditional controllers with AI controllers

(e.g., deep neural networks), in order to achieve more optimized and

flexible control. Given the great learning and generalization capabil-

ities of deep neural networks, AI controllers have been increasingly

deployed in various domains to handle complex situations in the

physical world [21, 26].

Despite the rapid development of AI-enabled CPS, there is a lack

of comprehensive analysis of their performance (e.g., safety, reliabil-
ity, robustness) in different domains. The main reason is that unlike

the large and growing open-source community in conventional

software, CPS are often kept as private intellectual properties by

industrial practitioners, in which strong domain knowledge and

know-how are encoded. Therefore, even up to the present, very

few benchmarks of AI-enabled CPS are publicly available for such

analysis. Furthermore, since existing quality assurance methods

such as falsification [1, 2, 6, 8, 33, 34] are mostly designed for tradi-

tional CPS controllers, it is unclear to what extent these methods

are still effective in analyzing AI controllers.

To bridge this gap, in this paper, we take the first step of bench-

marking AI-enabled CPS in multiple industrial domains and per-

forming a systematic analysis of their performance in comparison

to their traditional counterparts. Fig. 1 shows our high-level study

workflow. In particular, we investigate three main research ques-

tions to identify the challenges and potential opportunities for

building safe and reliable AI-enabled CPS:

• RQ1. How well do the DRL-based AI controllers perform
compared with the traditional controllers? This RQ aims to

establish a comprehensive understanding of the advantages and

limitations of both traditional and AI controllers in CPS. Our

experiment shows that AI controllers do not always outperform

their traditional counterparts. In several cases, AI controllers

have weaknesses in handling multiple control outputs and fail to

balance among multiple requirements.

• RQ2: Towhat extent are existing CPS testingmethods still
effective on AI-based CPS? Falsification is a commonly used

https://sites.google.com/view/ai-cps-benchmark
https://doi.org/10.1145/3510457.3513049
https://doi.org/10.1145/3510457.3513049
https://doi.org/10.1145/3510457.3513049
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Figure 1: Workflow summary of AI-enabled CPS dataset and benchmark construction, and high-level empirical study design.

technique to detect defects in traditional CPS. Although many

falsification techniques have been proposed, it is still unclear

whether they are still effective in the context of AI-enabled CPS.

This RQ aims to establish a testing benchmark of different falsi-

fication methods on both traditional and AI-enabled CPS. Our

comparative study finds that existing falsification methods are

mostly designed for traditional controllers, and are not effective

enough for AI-enabled CPS.

• RQ3:Can the combination of traditional andAI controllers
bring better performance? In practice, building a hybrid con-

troller that strategically switches between AI controllers and

traditional controllers can be a promising direction for better

performance (e.g., similar to component redundancies for safety

in ISO 26262 [11]). This RQ aims to make an early investigation

on whether this can be a promising direction in the context of

AI-enabled CPS. Overall, we find that among the three types of

hybrid controllers we explored, a scenario-dependent approach

outperforms the other two in most of the cases. This result con-

firms that strategically combining traditional and AI controllers

is a promising direction for further research.

In summary, this work makes the following contributions:

• We create the first public dataset and benchmark of AI-enabled

CPS that span over various industrial domains, such as driving

assistants, chemical reactor, aerospace, powertrains, etc. This
provides a common ground for evaluating AI-based CPS and also

enables further research along this direction.

• We perform a systematic analysis of the performance (e.g., safety,
reliability, robustness) of AI-enabled CPS, and benchmarks the

current techniques (e.g., falsification, system enhancement) as

the basis for further investigation.

• Based on the analysis results, we further pose discussions on the

future directions of AI-enabled CPS, including effectiveness of

AI controllers, testing tools for AI-enabled CPS, and methods to

construct hybrid control systems.

To the best of our knowledge, this is the very first paper that estab-

lishes a publicly available dataset and benchmark for industry-level

CPS with AI controllers. The benchmark and our empirical study

results demonstrate the potential research opportunities around

AI-enabled CPS to meet the growing industrial demands. Our work

enables better understanding, establishes the basis, and paves the

path towards further quality assurance research to build safe and

reliable AI-enabled CPS.

2 BACKGROUND
This section gives an introduction on CPS andAI controllers for CPS.

Specifically, we describe deep reinforcement learning (DRL) based

AI controllers in this paper. We also briefly describe Signal Temporal
Logic (STL), a specification language of CPS, and falsification, a
typical and important testing method for CPS based on STL.

2.1 Cyber-Physical Systems and AI controllers
CPS have been widely adopted in safety-critical industrial domains,

such as automotive systems, avionics, medical devices, etc. CPS
make use of computer programs to monitor and control the be-

haviors of mechanical systems. Fig. 2a shows a brief overview of a

CPS, which consists of a plant𝑀 and a controller 𝐶 . The plant is a

physical environment, whose next state 𝑦 is decided by the current

state and the control command 𝑢. The control command 𝑢 is issued

by a software controller. Commonly-used traditional controllers

include proportional integral derivative (PID) control, model predic-
tive control (MPC), etc. (detailed in §3). These controllers make the

control decision 𝑢 based on the state 𝑦 and an external input 𝑖 .

In CPS, signals are passed between components in a system

and between the system and the external environment. Formally,

a signal 𝑠 : [0,𝑇 ] → Rdim is defined as a time-variant function,
where 𝑇 ∈ R+ denotes the time horizon, and dim ∈ N+ is called
the dimension of the signal. In Fig. 2a, the system state 𝑦, the

control decision 𝑢, and the external input 𝑖 are all signals. Sensors

and actuators are used to collect, process, and pass these signals

between the plant𝑀 and the controller 𝐶 in a CPS model.

AI Controller.With the boom of AI in the past few years, practi-

tioners have started considering replacing traditional controllers

with AI controllers. Fig. 2b gives an overview of AI-enabled CPS.
An AI controller can be implemented and trained in different ways,

such as supervised learning and reinforcement learning. Among dif-

ferent methods, deep reinforcement learning (DRL) is considered

as the state-of-the-art, and has succeeded in various application do-

mains [3]. In this study, we mainly focus on DRL-based controllers.

We briefly introduce DRL below.
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Figure 2: Abstract workflow of CPS, with a traditional con-
troller and an AI controller, respectively

DeepReinforcement Learning.Unlike supervised learning, DRL
does not require collecting labeled datasets beforehand. Instead, it

follows the “trial-and-error” paradigm—learning the best strategy

via repeated interactions with the external environment. Techni-

cally, DRL requires to train an agent in an environment so that the

agent learns the best policy that maximizes the cumulative reward.
At each step, the agent has a state given by the environment and

the agent itself, and it is required to take an action to transit from

the current state to a new one. A policy is a function that maps

a state-action pair to a real-valued reward [4]. For a fixed state,

the reward of each action depends on the feedback from the en-

vironment. In order to learn the best policy, the agent repeatedly

tries an action to obtain a reward, and updates the policy accord-

ingly. There is a variety of policy updating methods, such as Deep
deterministic policy gradient (DDPG) [20], Twin-delayed deep deter-
ministic policy gradient (TD3) [13], Actor-critic (A2C) [7], Proximal
policy optimization (PPO) [27], Soft actor-critic (SAC) [14], etc. We

refer readers to [19] for more details. DRL can be naturally applied

to learn control policies for CPS by interacting with its plant, which
is the physical environment of the system.

2.2 Temporal Specification of CPS
The behavior of a CPS is usually constrained by temporal require-

ments. Signal Temporal Logic (STL) is a widely adopted specifi-

cation language to describe such requirements. In the following

paragraphs, we briefly explain the syntax and semantics of STL.

STL Syntax. STL are composed of atomic propositions and formulas,
defined as follows: 𝛼 ::≡ 𝑓 (𝑥1, . . . , 𝑥𝑁 ) > 0, 𝜑 ::≡ 𝛼 | ⊥ | ¬𝜑 |
𝜑1 ∧ 𝜑2 | 𝜑1 U𝐼 𝜑2 Here, 𝑓 is an 𝑁 -ary function 𝑓 : R𝑁 → R,
𝑥1, . . . , 𝑥𝑁 are variables, 𝐼 is a closed non-singular interval in R≥0,
i.e., 𝐼 = [𝑎, 𝑏] or [𝑎,∞) where 𝑎, 𝑏 ∈ R and 𝑎 < 𝑏. U denotes the

until operator, and 𝜑1U𝐼 𝜑2 requires that 𝜑1 should be true during

the interval 𝐼 until 𝜑2 becomes true. Other common connectives

such as ∨,→,⊤, □𝐼 (always) and ^𝐼 (eventually), are introduced
as abbreviations: 𝜑1 ∨ 𝜑2 ≡ ¬𝜑1 ∧ 𝜑2, 𝜑1 → 𝜑2 ≡ ¬𝜑1 ∨ 𝜑2, ^𝐼𝜑 ≡
⊤ U𝐼 𝜑 and □𝐼𝜑 ≡ ¬^𝐼¬𝜑 . An atomic formula 𝑓 ( ®𝑥) ≤ 𝑐 , where

𝑐 ∈ R, is accommodated using ¬ and the function 𝑓 ′( ®𝑥) := 𝑓 ( ®𝑥) −𝑐 .
QuantitativeRobust Semantics.Traditional temporal logics (e.g.,
linear temporal logic) only have Boolean semantics that states the

Boolean satisfaction of a formula. In contrast, STL is equipped with

quantitative semantics [7] that indicates not only if a formula is

satisfied, but also how much a formula is satisfied.

Algorithm 1 The classic falsification algorithm

Require: CPS model𝑀𝐶
, an STL specification 𝜑 , a budget 𝐵𝐺 .

1: function Hill-Climb-Falsify(𝑀𝐶 , 𝜑, 𝐵𝐺 )

2: initialize a placeholder 𝑖 ⊲ best input so far

3: rb←∞ ⊲ minimum robustness so far

4: for 𝑘 ∈ {0, . . . , 𝐵𝐺 } do
5: 𝑖𝑘 ← Hill-Climb( ⟨𝑖𝑙 , rb𝑙 ⟩𝑙=0,...,𝑘−1)
6: rb𝑘 ← Rob(𝑀𝐶 (𝑖𝑘 ), 𝜑) ⊲ compute robustness

7: if rb𝑘 < rb then
8: rb← rb𝑘 , 𝑖 ← 𝑖𝑘

9: return
{
𝑖 if rb < 0

Failure otherwise, no violation is found

Formally, the STL quantitative semantics Rob(𝑠, 𝜑) maps a signal

𝑠 and a STL formula 𝜑 to a real number, which reflects how robustly

𝑠 satisfies 𝜑 . The larger this real number is, the further 𝑠 is from

violating 𝜑 . If the number becomes negative, it indicates that 𝑠

violates 𝜑 . For example, let 𝑠 be a variable and 𝜑 ≡ 𝑠 > 0 be the

specification. Then Rob(𝑠, 𝜑) can simply be the value of 𝑠: once 𝑠

is negative, 𝜑 is violated. If interested, please refer to [7] for the

complete definition of STL robust semantics.

2.3 CPS Testing Methodology
Falsification is an established methodology in CPS testing [2, 6, 8,

34]. Given a model 𝑀𝐶
and an STL specification 𝜑 , falsification

searches for a counterexample input signal 𝑖 such that the corre-

sponding output signal𝑀𝐶 (𝑖) violates 𝜑 . In this way, it proves the

unsatisfiability of the system model𝑀𝐶
to the specification 𝜑 .

Alg. 1 describes a basic falsification algorithm. Essentially, this

algorithm formulates the testing problem as an optimization one,

by taking the robustness as the objective function. In this algorithm,

the CPS model𝑀𝐶
is treated as a black box—only its input signal

𝑖 and the corresponding output signal 𝑀𝐶 (𝑖) (system states) can

be observed. In the main loop (Lines 4–8 in Alg. 1), falsification

tries different input signals 𝑖𝑘 to minimize the robustness value

rb𝑘 computed based on𝑀𝐶 (𝑖𝑘 ) and 𝜑 , so that the system is closer

to violation of the specification 𝜑 . Once a negative robustness is

observed, falsification will terminate and return that input as a

counterexamples. Otherwise, it will keep searching until the time

budget is run out (Line 9).

To solve the optimization problem, falsification employs hill-
climbing optimization algorithms, as shown in Line 5 of Alg. 1.

Hill-climbing optimization algorithms are a family of stochastic

meta-heuristics-based optimization algorithms. In general, these

algorithms first do random sampling in the input space and obtain

the robustness values of these inputs. Then based on the obser-

vations, they propose new samplings with the aim of decreasing

robustness. Typical such algorithms include CMAES [15], Global

Nelder-Mead [22], Simulated Annealing [29], etc.

3 BENCHMARK COLLECTION
3.1 Benchmark Collection
As most industrial CPS are treated as private intellectual properties

and are kept confidential, it is challenging to find a large collection

of practical and open-sourced CPS. We focus on two sources that
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Table 1: The collected subject CPS

Subject CPS Domain Description Type of Controller #Blocks
Adaptive Cruise Control (ACC) Driving assistant Maintain a safety distance from a lead car Model predictive control 297

Lane Keeping Assistant (LKA) Driving assistant Keep a vehicle in the center of a lane Model predictive control 427

Automatic Parking Valet (APV) Driving assistant Park a vehicle on a target spot Model predictive control 224

Exothermic Chemical Reactor (CSTR) Chemical reactor Promote a reactor transition of conversion rate Model predictive control 316

Land a Rocket (LR) Aerospace Land a rocket on a target position Model predictive control 175

Abstract Fuel Control (AFC) Powertrain Maintain the reference air-to-fuel ratio PI & Feedforward control 281

Wind Turbine (WT) Power grid Maintain demanded values for key components PID & Lookup table 161

Steam Condenser (SC) Thermal systems Maintain the reference pressure PID control 56

Water Tank (WTK) Water storage Keep the water level at a reference value PID control 919

potentially release open-sourced systems with documentations: (1)

the distribution of Matlab control-related toolboxes, such as the

model predictive control toolbox1, and (2) CPS-related literature,

such as the papers from software engineering and cyber-physical

systems. Eventually, we selected nine industry-level CPS in seven

domains based on the following criteria (see Table 1).

• Open-source.ACPSmust be open-sourced so that we canmodify

the system to replace the traditional controller in it with AI

controllers.

• Documentation. A CPS must have comprehensive documenta-

tion so that we can configure the system properly. Furthermore,

to train AI controllers using DRL, we need to understand the

system requirements to design proper reward functions in DRL.

• Complexity. A CPS must reflect the industrial complexity in or-

der to get useful insights and implications from the experiments.

• Simulink. A CPS must use Simulink as its modeling platform.

Simulink is aMatlab-based modeling environment developed by

Mathworks and is widely adopted in industry. Having a consistent
platform makes it easier to set up and run the benchmarks.

Table 1 gives an overview of the nine CPS in the benchmark.

Specifically, Column #Blocks shows the number of blocks in each

system, which is often used to measure the complexity of a CPS.

Each system ships with a built-in traditional controller. We exper-

iment with different types of learning algorithm, various agent

configurations, and diverse reward functions to explore the capa-

bility of AI controllers. Among all variants, we select the best one

as the final AI controller for each system. Due to the page limit,

we elaborate on three representative systems (of different types)

and their traditional controllers and AI controllers in the following

section.

3.2 Three Representative CPS Examples

AdaptiveCruiseControl (ACC).ACC is released byMathworks [24].

ACC is deployed in a driving environment with an ego car and a

lead car. The goal of this system is to make the ego car move at a

user-set velocity 𝑣set as long as the relative distance 𝑑rel between

two cars is greater than the safety distance 𝑑safe . The external input

of the whole system is the acceleration of the lead car. The outputs

include the velocity 𝑣ego and the position of the ego car.

The traditional controller used in this system is model predictive
control (MPC). MPC achieves the optimal control at each moment

1
https://www.mathworks.com/products/model-predictive-control.html

by predicting the motions of the two cars in a finite time-horizon,

and optimizing the acceleration of the ego car to maintain the

safe distance. Specifically, MPC uses a linear model to predict the

acceleration and velocity of both cars.

The DRL controller in ACC collects the system environment

information to generate observation states. By evaluating the cur-

rent state and computing a corresponding state value, the DRL

controller outputs an acceleration command to the ego car. Unlike

MPC, the DRL controller uses a reward function to evaluate the

agent performance from two aspects: velocity and distance. While

the safety distance 𝑑safe is secured, the ego car should approach to

the cruise velocity 𝑣set . Otherwise, it follows the lead car velocity

to avoid collision. The reward function penalizes the agent by the

violation of the safety distance requirement and rewards the agent

based on how close the ego car velocity 𝑣ego is to the target speed.

Steam Condenser (SC). This system is collected from [32]. As an

indispensable part of modern steam power plants, SC is a sealed

container where the steam is condensed by cooling water. The goal

of the system is to maintain the pressure of condenser 𝑃 at a desired

level Pref . The external input of the system is the steam mass flow

rate Fs (𝑘𝑔/𝑠). The output of the system is the internal pressure

of the condenser. The traditional controller used in SC is a PID

controller which outputs a cooling water flowrate. A typical PID

controller includes three parameters: proportional (P), integral (I)

and Derivative (D). 𝑃 reflects the current deviation of the system,

𝐼 mirrors the accumulations of past errors and 𝐷 represents on

the anticipatory control. Through on-demand combination of the

above three control parameters, the system error can be corrected.

The DRL controller in SC outputs a cooling water flowrate to

maintain the condenser pressure at a desired level. It uses a reward

function to make the condenser reach the desired pressure level

as soon as possible and maintain this pressure until a new desired

pressure is set. When the SC system moves to a steady state, the er-

ror signal may fluctuate at a small range. Then the reward function

amplifies the error to improve the agent performance.

Abstract Fuel Control (AFC). AFC is a complex air-fuel control

system released by Toyota [18]. The whole system takes two input

signals from the outside environment, PedalAngle and EngineSpeed,
and outputs 𝜇 =

|AF−AFref |
AFref , which is the deviation of the air-to-fuel

ratio AF from a reference value AFref . The goal of this system is to

control the deviation 𝜇 no more than a predefined threshold.

https://www.mathworks.com/products/model-predictive-control.html
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The original control system consists of two parts: (1) a PI con-

troller, and (2) a feed-forward controller. The former regulates the

air-to-fuel ratio AF in a closed loop, using the measured AF to

compute the fuel command. The latter estimates the rate of air flow

into the cylinder by measuring of the inlet air mass flow rate.

The DRL controller in AFC gathers the information about engine

dynamics and outputs a fuel command to achieve the reference

AF ratio. It uses a reward function to guide the agent to reduce

the deviation 𝜇. Specifically, a positive reward is given based on

how smaller 𝜇 is and a negative feedback is generated if 𝜇 exceeds

certain threshold. A small penalty is added based on the DRL action

value from the last time step to acquire a stable control output.

4 STUDY DESIGN
As illustrated in Fig. 1, we perform experiments to answer three

research questions. In RQ1, we evaluate the performance of AI-

enabled CPS vs. traditional CPS. In RQ2, we evaluate the effective-

ness of the existing falsification methods. In RQ3, we investigate the

possibility of combining traditional and AI controllers. All experi-

ments are based on system specifications from the official documen-

tation (§4.1). These specifications further derive different metrics

and experiment settings for each RQ, which we detail in §4.2.

4.1 System Specifications
In this work, we adopt STL (introduced in §2.2) as our specification

language to evaluate the temporal properties of CPS. Specifically, we

extract the temporal properties of the models from their documents,

and summarize them in Table 2. We classify these properties into 5

categories, namely S1-S5, according to their semantics:

• S1: Hard safety. S1must be strictly satisfied by the systems, any

violation of S1 can lead to safety problems. S1 follows the pattern
□𝐼 (𝜑1), where 𝜑1 is a system invariant during the simulation.

• S2: Soft safety. S2 follows the similar pattern □𝐼 (𝜑2) as S1, but
the satisfaction of 𝜑2 is not demanded. Instead, S2 is used to

measure the average and maximum deviations of the outputs

from the reference values. Based on that, we can understand the

average and boundary behaviors of the controllers.

• S3: Steady state. S3 follows the pattern ^𝐼□𝐼 ′ (𝜑3). It requires
the system to satisfy 𝜑3 for the interval 𝐼

′
at some point in 𝐼 . S3

is used to evaluate if the system reaches the steady state 𝜑3 and

stays there for the interval 𝐼 ′.
• S4: Resilience. S4 follows the pattern □𝐼 (𝜑41 → ^𝐼 ′𝜑42). It re-
quires that, during the interval 𝐼 , whenever an event 𝜑41 happens,

the system should react by satisfying 𝜑42 within 𝐼 ′. S4 is used to

evaluate the system’s ability to recover from fluctuations.

• S5: Liveness. S5 follows the pattern ^𝐼 (𝜑5), where 𝜑5 should be
eventually satisfied during 𝐼 . S5 is used to inspect the system to

avoid the case when the controller makes conservative control

decisions to passively meet the safety requirements.

4.2 Research Questions
RQ1. How well do the DRL-based AI controllers perform
compared with the traditional controllers?

While many AI controllers have been proposed and used, there

has not been a systematic study on how well AI controllers perform

compared with traditional controllers. RQ1 aims to compare the

performance of these two kinds of controllers and understand their

pros and cons. Since DRL-based approaches are the state of the art

among current AI controllers, we mainly focus on DRL-based con-

trollers in this study. In the experiment, we first randomly generate

100 input signals. Then we run simulations on each of the CPS with

the traditional controller and the DRL-based controller respectively.

We compare the performances of these controllers according to mul-

tiple properties introduced in §4.1. To better understand the quality

of the controllers, we not only consider Boolean satisfactions to the

STL formulas in §4.1, but also propose a series of more fine-grained

metrics that consider the semantics of different formula patterns.

These fine-grained metrics for S1-S5 are listed as follows:

• S1: We record the number of satisfying simulations 𝑛𝑠 and com-

pute the satisfaction ratio over 100 rounds of simulation since S1
are safety properties required to be satisfied strictly.

• S2: In addition to the Boolean satisfaction of S2, we are also in-
terested in how much S2 is violated in each case. Hence, given an

output signal 𝑠 , we first collect all the moments 𝑇 when 𝜑2 is vi-

olated. Then, we present two metrics regarding S2: 1)MAE—the
mean value of the average absolute error over 100 simulations,

and 2) MAXERR—the mean value of the maximum absolute

error over 100 simulations. With these two metrics, we can un-

derstand the average and the extreme violations, respectively.

• S3: We use S3 to extensively explore how stable the system is

during each round of simulation. For 100 simulations, we record

how many moments 𝑇 are there when 𝑠 (𝑡) falls into a steady

state defined by 𝜑3. Then we compute the percentage of these

steady state moments by
#𝑇

#𝑇total
in each round of simulation. We

take the average value over 100 simulations as the fine-grained

metric to evaluate S3.
• S4: We use

nr
nv to measure how good the systems satisfy S4 during

one round of simulation, where nv is the number of cases when

the system falls into the fluctuating state defined by 𝜑41, and nr
is the number of the cases when the system can react by doing

𝜑42. We then take the average value of
nr
nv over 100 simulations.

• S5: We record the number of simulation rounds 𝑛𝑠 satisfying

S5 in §4.1. Then we calculate the ratio of satisfaction over 100

rounds of simulation.

By analyzing the evaluation results with the metrics above, we can

obtain more comprehensive information to understand the advan-

tage and limitations of DRL-based AI controllers and traditional

controllers, from multiple perspectives.

RQ2. To what extent are existing CPS testing methods still
effective on AI-based CPS?

For RQ2, we focus on an established CPS testing methodology

called falsification (introduced in § 2.3). Falsification has proved

to be effective on traditional CPS [1, 33, 34], but few studies have

evaluated it on AI controllers. Since falsificationmethods are guided

by logic semantics, it is unclear whether it is still effective on AI

controllers, which are essentially statistical methods with high

uncertainty and low interpretability.

In the experiment, we select two widely-used falsification tools,

Breach [6] and S-TaLiRo[2]. Note that both Breach and S-TaLiRo

integrate several different back-end optimization solvers, and ap-

ply different tricks to improve the performance. We select Global
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Table 2: The STL specifications of the benchmark CPS. S1 follows the pattern: □𝐼 (𝜑1); S2 follows the pattern: □𝐼 (𝜑2); S3 follows
the pattern: ^𝐼□𝐼 ′ (𝜑3); S4 follows the pattern: □𝐼 (𝜑41 → ^𝐼 ′𝜑42); S5 follows the pattern: ^𝐼 (𝜑5);

Systems S1–hard safety S2–soft safety S3–steady state S4–resilience S5–liveness

ACC
𝐼 = [0, 50]

𝜑1 ≡ 𝑑rel ≥ 𝑑safe

𝐼 = [0, 50]
𝜑2 ≡ 𝑣ego ≤ 𝑣set

𝐼 = [0, 50], 𝐼 ′ = [0, 40]
𝜑3 ≡ 𝑑rel ≥ 𝑑safe + 0.2

𝐼 = [0, 50], 𝐼 ′ = [0, 1]
𝜑41 ≡ ¬𝜑3, 𝜑42 ≡ 𝜑3

𝐼 = [0, 50]
𝜑5 ≡ 𝑣ego ≥ 1

LKA
𝐼 = [0, 15]

𝜑1 ≡ |error1 | ≤ 0.85

𝐼 = [0, 15], 𝜑2 ≡ 𝜑21 ∧ 𝜑22 𝐼 = [0, 15], 𝐼 ′ = [0, 10]
𝜑3 ≡ |error1 | ≤ 0.5

𝐼 = [0, 15], 𝐼 ′ = [0, 1]
𝜑41 ≡ ¬𝜑3, 𝜑42 ≡ 𝜑3

𝐼 = [0, 15]
𝜑5 ≡ |v | ≥ 1

𝜑22 ≡ |error1 | = 0

𝜑21 ≡ |error2 | = 0

APV
𝐼 = [0, 12]

𝜑1 ≡ |error1 | ≤ 1

𝐼 = [0, 12], 𝜑2 ≡ 𝜑21 ∧ 𝜑22 𝐼 = [0, 12], 𝐼 ′ = [0, 10]
𝜑3 ≡ |error1 | ≤ 0.5

𝐼 = [0, 12], 𝐼 ′ = [0, 1]
𝜑41 ≡ ¬𝜑3, 𝜑42 ≡ 𝜑3

𝐼 = [0, 12]
𝜑5 ≡ |v | ≥ 0.1

𝜑21 ≡ |error1 | = 0

𝜑22 ≡ |error2 | = 0

CSTR
𝐼 = [25, 30]

𝜑1 ≡ |error | ≤ 0.5

𝐼 = [25, 30]
𝜑2 ≡ |error | = 0

𝐼 = [25, 30], 𝐼 ′ = [0, 4]
𝜑3 ≡ |error | ≤ 0.4

— —

LR
𝐼 = [14.8, 15]

𝜑1 ≡ |error | ≤ 0.5

𝐼 = [14.8, 15]
𝜑2 ≡ |error | = 0

— —

𝐼 = [0, 15]
𝜑5 ≡ |v | ≥ 0.1

AFC
𝐼 = [0, 30]

𝜑1 ≡ 𝜇 ≤ 0.2

𝐼 = [0, 30]
𝜑2 ≡ 𝜇 = 0

𝐼 = [0, 30], 𝐼 ′ = [0, 20]
𝜑3 ≡ 𝜇 ≤ 0.1

𝐼 = [0, 30], 𝐼 ′ = [0, 1]
𝜑41 ≡ ¬𝜑3, 𝜑42 ≡ 𝜑3

—

WT
𝐼 = [30, 630]
𝜑1 ≡ 𝜃 ≤ 14.2

𝐼 = [30, 630]
𝜑2 ≡ 𝜃 = 0

𝐼 = [30, 630], 𝐼 ′ = [0, 500]
𝜑3 ≡ 𝜃 ≤ 14

𝐼 = [30, 630], 𝐼 ′ = [0, 5]
𝜑41 ≡ ¬𝜑3, 𝜑42 ≡ 𝜑3

—

SC
𝐼 = [30, 35]

𝜑1 ≡ |error | ≤ 0.5

𝐼 = [30, 35]
𝜑2 ≡ |error | = 0

𝐼 = [30, 35], 𝐼 ′ = [0, 4]
𝜑3 ≡ |error | ≤ 0.4

— —

WTK
𝐼 = [5, 6] ∪ [11, 12] ∪ [17, 18]

𝜑1 ≡ |error | ≤ 0.2

𝐼 = [5, 6] ∪ [11, 12] ∪ [17, 18]
𝜑2 ≡ |error | = 0

𝐼 = [5, 6] ∪ [11, 12] ∪ [17, 18]
— —𝐼 ′ = [0, 0.8]

𝜑3 ≡ |error | ≤ 0.15

Nelder-Mead (GNM) and CMAES for Breach, and Simulated An-

nealing (SA) and stochastic optimization with adaptive restart

(SOAR) [23] for S-TaLiRo according to the findings in [10].

Due to the stochasticity of the falsification algorithms, for each

experiment, we repeatedly run the falsification algorithms, and

obtain a falsification rate
# successful trials

# total trials
as the evaluation metric.

We also report the average time consumption, and the average

number of successful falsification trials as complementary metrics.

In this experiment, we only run falsification on the systems that

never violate S1 (hard safety) during random simulations in the

experiment of RQ1. Because these systems are hard to be evaluated

in RQ1, which can be used as the changeable samples to measure the

performance difference among different falsification approaches.

Our results of RQ1 and RQ2 form a basic benchmark quality and

reliability analysis of AI-enabled CPS.

RQ3. Can the combination of traditional and AI controllers
bring better performance?

As suggested by international standards ISO26262 [11] and ISO/PAS
21448 (SOTIF) [12], modular redundancy (e.g., doubling or tripling) is
an important way to improve system quality and reliability. There-

fore, in RQ3, we aim to investigate the performance of hybrid

controllers—a novel type of controllers which combines the tradi-

tional and DRL-based ones. We perform an exploration on three

typical approaches for such combinations: (1) a random-based ap-

proach, (2) an average-based approach, and (3) a scenario-dependent

approach, with the purpose to understand whether this could be a

promising direction for further research.

• Random-based. This method chooses a signal randomly from

two controllers and passes it to the subsequent components. Here,

sample time is a hyperparameter that indicates how frequently

the controller switches. We use 2 different sample times in our

experiments: (1) 0.1 sec, which is the minimum system step time,

and (2) 1 sec, which is a log scale increase for comparison.

• Average-based. This method takes the average value of the out-

puts of two controllers as the final output.

• Scenario-dependent. Based on the insights from the experi-

ments of RQ1 and RQ2, we summarize the scenarios where dif-

ferent types of controllers perform well and design a dynamic

controller switch logic to achieve the optimal control strategy.

For instance, for a system with controller A and B, A may have

smaller value on S2 (averaged error signal) while B may have

better performance on S4 (resilience). A switch logic can be: if

the error signal exceeds a specified threshold which indicates the

system falls into an unsteady state, the control will be granted

to B to quickly recover to the steady state, and A may take in

charge to maintain a small error value under the steady state.

In RQ3, we use the same metrics from RQ1 and RQ2 to evaluate

these hybrid controllers under the same experimental settings.

Hardware & Software Dependencies. DRL training is computa-

tionally intensive, so we use a server with 3.5GHz Intel i9-10920X

CPU, 15GB RAM, and an NVIDIA TITAN V GPU. Other experi-

ments (e.g., falsification) were conducted using Breach 1.9.0 with

GNM and CMAES as solvers and S-TaLiRo 1.6.0 with SA and SOAR

as solvers on an Amazon EC2 c4.xlarge server with 2.9GHz Intel

Xeon E5-2666 CPU, 4 virtual CPU cores, and 8GB RAM.

5 EXPERIMENTAL RESULTS
5.1 RQ1. Performance of AI-enabled CPS

vs. traditional CPS
Fig. 3 summarizes the evaluation results of traditional and AI-

enabled CPS via radar charts. Each axis in a radar chart represents

an evaluation metric from §4.1. We normalize the result of each

metric into [0, 1]. A higher value indicates a better performance.

• S1: Hard safety. Not surprisingly, traditional controllers have
better or at least comparable performance on S1 in 7 of the 9
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Figure 3: Performance comparison on systems with traditional and DRL controllers (RQ1)

systems (ACC, LKA, APV, CSTR, LR, AFC, and WT), compared to DRL

controllers. This is because safety always has the highest priority

in the design of a traditional controller. However, in WTK and SC,
the traditional PID controllers fail to regulate the error signals

within a limited range. In particular, an oscillated signal can be

generated by PID controllers and the maximum error threshold

is therefore violated by an instantaneous overshoot.

DRL controllers also have good performance on S1 in 6 systems

(ACC, LKA, CSTR, AFC, SC, and WTK). However, DRL controllers are

better than traditional controllers in SC and WTK, while worse
in WT and APV. Unlike the behavior of PID controllers in SC and
WTK, DRL controllers output stable control signals with no instant
overshoot. Thus, the safety requirements are held.

Overall, for S1, traditional controllers and DRL controllers have

similar performance in systems like ACC, LKA, CSTR, and AFC. Also,
for all systems, there is always at least one controller that never

violates S1. These results indicate that, the random sampling

method cannot effectively evaluate systems on S1, and therefore,

we use the more advanced testing method, namely falsification,

in RQ2 to acquire more in-depth insights.

• S2: Soft safety. The traditional controllers have good MAE per-

formance in 5 of the 9 systems (ACC, LKA, CSTR,LR, and AFC) and
decent MAXERR performance in 5 systems (ACC, LKA, APV,LR,
and WT). Compared with the results on S1, there are fewer tra-
ditional CPS that outperform AI-enabled CPS on S2. Moreover,

a traditional controller with a good MAE result may not have

a similarly good MAXERR result, e.g., AFC and CSTR. This indi-
cates that the output signals from traditional controllers could

be unstable, compared with DRL controllers.

DRL controllers bring good MAE results in 7 systems (ACC, LKA,
APV, WT, SC, LR, and WTK) and good MAXERR results in 6 systems

(ACC, LKA, CSTR, AFC, SC, and WTK). According to these results, if

a system has too many performance requirements or multiple

control outputs, such as APV and WT, a standalone DRL controller

may not handle these situations well.

• S3: Steady state. Most traditional controllers can provide rela-

tively stable outputs in all systems except SC and WTK. The poor
performances of these two systems can be attributed to their

oscillated PID outputs. In contrast, DRL controllers show good

performance in all of the systems. Moreover, we find that dif-

ferent DRL controllers of the same system may have a variance

in their performance. For instance, in WTK, while TD3 does not

perform as well as DDPG in MAE, it outperforms DDPG in S3.
• S4: Resilience. Both DRL and traditional controllers show good

performances regarding resilience in the 5 applicable systems,

except the traditional and TD3 controllers in APV. This reveals
their weaknesses in handling fluctuations. In contrast, although

DDPG performs strongly in resilience, it does not conform to

S1, the hard safety requirements. For that reason, it can not

be considered as a reliable system.

• S5: Liveness. All the controllers show positive results on S5. This
indicates that none of our controllers takes conservative strate-

gies to passively satisfy the safety requirements.

Regarding the comparison between the traditional controller and

DRL controllers in each system, DRL controllers have better or simi-

lar performance in most of the systems. However, this is not always

the case. For example, in APV and WT, the DRL-based controllers do

not perform as well as their traditional counterparts.

Answer to RQ1: Though AI controllers achieve better or

comparable performance in many cases, they also fail to prop-

erly function in several complex cases, implying that falling

back to traditional controllers can be a safer choice in some

complex scenarios that involve multiple control requirements.

5.2 RQ2. Effectiveness of Falsification
Table 3 shows the experimental results of RQ2, where we evaluate

the performances of 4 falsification approaches using the metrics of

FR (/30), time (secs), and #sim (see §4.2). For each benchmark, we

select their S1, namely hard safety, as the target system specification.
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Table 3: Falsification performance comparison between four existing falsification algorithms (RQ2)
ACC-T ACC-DDPG ACC-TD3 ACC-SAC CSTR-T CSTR-DDPG CSTR-PPO CSTR-TD3

FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim

GNM-BR 3 269.9 187.7 1 250.6 144.0 25 162.6 107.9 1 313.8 159.0 28 292.0 56.7 0 - - 0 - - 0 - -

CMAES-BR 16 142.4 101.5 0 - - 16 76.9 30.8 9 263.8 98.9 30 190.8 35.8 0 - - 0 - - 0 - -

SA-ST 2 148.1 148.0 1 218.6 147.0 0 - - 1 433.7 272.0 30 200.29 47.57 0 - - 0 - - 0 - -

SOAR-ST 0 - - 0 - - 0 - - 0 - - 30 214.0 50.5 0 - - 0 - - 0 - -

AFC-T AFC-DDPG AFC-PPO AFC-A2C SC-T SC-DDPG SC-PPO SC-A2C
FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim

GNM-BR 0 - - 0 - - 30 9.5 6.8 30 9.4 6.1 30 0.3 1.0 0 - - 0 - - 0 - -

CMAES-BR 0 - - 0 - - 10 37.1 28.9 4 77.3 61.3 30 0.3 1.0 0 - - 0 - - 0 - -

SA-ST 9 295.2 148.4 0 - - 0 - - 0 - - 30 0.2 1.0 0 - - 0 - - 0 - -

SOAR-ST 11 411.3 157.4 0 - - 0 - - 0 - - 30 0.2 1.0 0 - - 0 - - 0 - -

LKA-T LKA-DDPG LKA-PPO LKA-A2C LKA-SAC APV-T APV-DDPG APV-TD3
FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim

GNM-BR 30 636.9 75.4 0 - - 30 10.6 10.9 30 5.0 5.0 30 60.5 54.0 0 - - 30 41.5 1.0 30 42.8 1.0

CMAES-BR 27 414.9 47.8 0 - - 28 21.6 16.6 30 9.4 7.5 28 82.3 44.4 0 - - 30 51.6 1.0 30 59.7 1.0

SA-ST 24 1006.2 114.8 0 - - 29 28.4 33.0 29 62.8 64.0 30 20.7 25.1 0 - - 30 112.5 1.0 30 119.2 1.0

SOAR-ST 30 262.4 30.8 0 - - 30 5.2 7.1 30 3.3 5.2 30 50.2 27.6 0 - - 30 115.9 1.0 30 126.2 1.0

WT-T WT-DDPG WT-PPO WTK-T WTK-DDPG WTK-TD3 LR-T LR-DDPG
FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim FR time #sim

GNM-BR 30 197.8 42.9 0 - - 0 - - 30 3.3 5.8 0 - - 0 - - 20 4224.7 80.8 30 68.5 1.0

CMAES-BR 0 - - 0 - - 0 - - 30 9.8 17.6 0 - - 0 - - 16 4341.1 78.4 30 54.9 1.0

SA-ST 20 335.5 65.4 0 - - 0 - - 30 8.8 20.6 0 - - 0 - - 13 6532.2 92.9 30 78.4 1.0

SOAR-ST 30 255.7 50.9 0 - - 0 - - 30 4.0 9.1 0 - - 0 - - 9 7809.1 93.2 30 83.7 1.0

The reason is that, according to RQ1, we know that most of the

systems do not violate their hard safety properties. Therefore, it

makes sense to further investigate the satisfaction of each system

to S1. In our experiments, we set the budget (𝐵𝐺 in Alg. 1) as 300.

We highlight the best performer for each CPS model in Table 3,

according to their FR.

The results presented in Table 3 reveal apparent differences in the

abilities of different falsification algorithms for specific cases. For

example, CMAES-BR performs well in ACC-T, but does not perform
well in WT-T or AFC-A2C; SOAR-ST performs well in AFC-T, but does
not perform well in ACC-TD3 or AFC-A2C.

We identify a model as falsifiable once there exists a falsification
algorithm that manages to falsify the model. Based on our observa-

tions, we find that, for any falsification algorithm A, there always
exists a falsifiable benchmark that can not be falsified by A. For
instance, GNM-BR cannot falsify the falsifiable model AFC-T, and
performs poorly on ACC-SAC; CMAES-BR cannot falsify the falsifi-

able model ACC-DDPG or WT-T; SA-ST cannot falsify the falsifiable

model AFC-PPO or AFC-A2C; SOAR-ST cannot falsify the falsifiable

model AFC-PPO or AFC-A2C. This result proves the famous no free
lunch theorem in optimization [30], and also motivates us to develop

more effective algorithms to handle these emerging AI-enabled CPS.

Answer to RQ2: Falsification, an established testing method,

fails to handle several AI-enabled CPS, highlighting the op-

portunity to develop new AI-aware testing methods for CPS.

5.3 RQ3. Performance of Hybrid Controllers
From the results of RQ1 and RQ2, we find that traditional and AI

controllers have their own advantages in satisfying different re-

quirements. For example, in CSTR (Fig. 3d), although the traditional

controller performs well in MAE, it does not perform well in MAX-

ERR. In contrast, the TD3 controller complements the situation,

holding a high MAXERR but low MAE. This inspires us to combine

traditional and AI controllers to obtain hybrid controllers, which

Table 4: Performance comparison on 4 hybrid benchmark
CPS with falsification tools (RQ3)

Tool GNM-BR CMAES-BR SA-ST SOAR-ST

Benchmark FR time #sim FR time #sim FR time #sim FR time #sim

ACC-HS 0 - - 11 177.9 71.5 2 465.4 188.0 0 - -

ACC-HR_0.1 1 123.9 48.0 0 - - 1 392.1 183.0 0 - -

ACC-HR_1 3 313.1 121.0 1 66.2 26.0 1 457.6 209.0 0 - -

ACC-HA 4 437.1 165.0 1 178.9 72.0 1 372.3 149.0 0 - -

AFC-HS 0 - - 0 - - 0 - - 0 - -

AFC-HR_0.1 0 - - 0 - - 0 - - 0 - -

AFC-HR_1 29 148.5 87.4 30 105.1 61.0 0 - - 0 - -

AFC-HA 0 - - 0 - - 0 - - 0 - -

WTK-HS 0 - - 0 - - 0 - - 0 - -

WTK-HR_0.1 0 - - 0 - - 0 - - 0 - -

WTK-HR_1 0 - - 0 - - 0 - - 0 - -

WTK-HA 0 - - 0 - - 0 - - 0 - -

CSTR-HS 3 835.8 155.0 1 1310.6 292.0 10 997.7 213.4 11 973.5 172.1

CSTR-HR_0.1 0 - - 0 - - 0 - - 0 - -

CSTR-HR_1 22 411.2 87.6 20 155.8 33.2 18 578.7 124.0 30 369.0 61.9

CSTR-HA 0 - - 0 - - 0 - - 1 1940.4 189.0

may outperform each of them alone. We explore three combination

methods, namely the random-based, the average-based, and the

scenario-dependent ones, introduced in §4.2. For the random-based

methods, we evaluate on multiple instances varied by their sam-

pling time. Our results include Fig. 4 that uses the same evaluation

metrics as RQ1, and Table 4 that applies the 4 falsification methods

to those hybrid controllers.

• ACC. From the Fig. 4 and Table 4, in ACC, all the hybrid controllers
perform better in falsification than the traditional controllers,

and the scenario-dependent hybrid controller performs well in

MAE compared to the traditional controller. In contrast, the per-

formances of the random-based or the average-based hybrid

controllers are not as good as the scenario-dependent ones.

• AFC. Among the 4 types of hybrid controllers we deployed, 3 of

them have similar or better performance than the traditional one.

• WTK. The scenario-dependent and the average-based hybrid con-

trollers are significantly better than the random-based controllers,

and none of the hybrid controllers have been falsified.

• CSTR. We find that, the random-based method controller HR_0.1

and the average-based controller are not falsified. Moreover, the
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Figure 4: Performance comparison on systems with hybrid controllers (RQ3)

average-based controller also performs well in MAXERR as its

constituent TD3 controller does.

In summary, the hybrid controllers can take advantage of their con-

stituent controllers. The results reflect that the random-based com-

bination method with large sample time can lead to an inconsistent

control logic, and it can cause serious safety issues. The average-

based method can be applied if the system is too complicated to

design a controller switching logic and/or the constituent con-

trollers have distinct advantages in different aspects. The scenario-

dependent approach is recommended as it can switch between

different controllers based on real-time system states. Moreover,

the controller switching logic should be exclusively designed to fit

the characteristics of the candidate controllers.

Answer to RQ3: Building a hybrid controller which strate-

gically switches between AI controllers and traditional con-

trollers is a promising direction and can significantly improve

the performance in our evaluated cases. For three types of hy-

brid controllers we explored, a scenario-dependent approach

outperforms the other two in most of the cases.

6 DISCUSSIONS, FUTURE DIRECTIONS AND
THREATS TO VALIDITY

Discussions. According to our insights from RQ1, DRL controllers

may fall short of handling multiple control outputs or balancing

multiple requirements simultaneously, compared to their traditional

counterparts. Indeed, the design of reward function may be too

complicated to compensate the balance among different require-

ments, since rewarding only a portion of the requirements may

overshadow others. In industry, it is a common scenario to handle

multiple requirements simultaneously. Therefore, applying DRL-

based AI controllers in these cases requires further research.

Based on our evaluation of existing falsification algorithms, we

find that falsification may not work effectively for AI-enabled CPS.

AI controllers have their specific structure and unique decision

logic, which is quite different from their traditional counterparts.

Therefore, taking into account the characteristics of this specific

formalism is important for effective testing.

The combination of different types of controllers offers a new

direction of improving the safety and performance of the controllers,

as demonstrated by our evaluation. Specifically, the scenario-dependent

approach outperforms others, showing that strategic combination

is necessary to achieve superior performances.

Future Directions. Based on the insights from our evaluation, we

propose the following three future directions for AI-enabled CPS.

• First, there is a need for more research efforts on benchmarks and

empirical studies in this direction. Moreover, more complicated

system requirements that reflect industrial standards or demands

should also be considered for further evaluation;

• Second, according to RQ2, existing falsification tools are not fully

effective in detecting requirement violations in AI-based CPS.

This offers a research opportunity of developing more advanced

testing techniques for AI-enabled CPS, e.g., by exploiting the

specific structure of neural networks for more effective testing;

• Third, besides testing, analysis techniques should be developed to

understand the root cause of the violations. To achieve this, more

research efforts on fault localization and repair are necessary.

Threats to Validity. In terms of construct validity, one potential
threat is that the evaluation metrics may not fully describe the

performance of controllers. To mitigate this threat, we used five

evaluation metrics and two falsification tools to comprehensively

measure and analyze the performance and reliability of CPS in our

benchmark. In terms of internal validity, one potential threat is that
the behavior of a CPS can vary when using different environment

parameters. To mitigate this threat, we chose to use the same pa-

rameters as described in the documentation of each CPS to keep

consistency. Further, we confirmed that our simulation results are

consistent with the source descriptions and demos. In terms of ex-
ternal validity, one potential threat is that our analysis results may

not be generalized to other CPS. To mitigate this threat, we tried

our best to collect a diverse set of CPS with different functionalities,

system environments, and control tasks.

7 RELATEDWORK

CPS Benchmarks. As mentioned in §3, collecting benchmarks

of CPS is challenging. An annual workshop, namely ARCH, aims

to mitigate this problem by bringing together CPS benchmarks

and holding competitions
2
for different research topics. The most

relevant competitions to this paper are Artificial Intelligence and
Neural Network Control Systems [19] and Falsification [10]. However,
the benchmark in [10] only includes traditional CPS rather than AI-

enabled CPS. While the benchmark in [19] includes AI-enabled CPS,

their benchmark includes less and simpler CPS such as Cart-Pole,
which are not from industrial application domains.

2
https://cps-vo.org/group/ARCH/FriendlyCompetition

https://cps-vo.org/group/ARCH/FriendlyCompetition
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AI Controllers for CPS. Duan et al. [9] proposed a benchmark on

continuous control tasks. However, this benchmark involves game

scenarios only such as Cart-Pole and Inverted Pendulum, rather than

complex real-world environments. Besides DRL, FNN also has been

used in designing a tracking controller for a robot manipulator [5];

however, the FNN controller is a subsystem which can only be used

to compensate a feedback controller.

CPS Testing and Verification. Currently, most of the research

efforts are devoted to formal verification of such systems, since it

can give rigorous proofs on their safety. For example, reachability

analysis [16, 28, 31] has been extensively studied and considered as

one of themost effectiveways to verify AI controllers. The other line

of formal verification of AI controllers is based on constraint solving,

such as DLV [17], etc. Due to the intrinsic scalability problem of

verification, their evaluations are usually on simple benchmarks.

Falsification is considered as a method that suffers much less from

the scalability issue than verification, and this is confirmed by the

empirical study [25], in which they compared the effectiveness of

model checking and testing on CPS. However, existing falsification

research mostly focuses on CPS with traditional controllers, and

does not consider the specific structure of neural networks.

8 CONCLUSION
This paper presents a public benchmark of AI-enabled CPS in vari-

ous domains, which can serve as a fundamental evaluation and test-

ing framework for enhancing the understanding and development

of AI-enabled CPS. Based on this benchmark, we collected a series

of evaluation metrics and measured the performance and reliability

of state-of-the-art deep reinforcement learning (DRL) controllers

on various types of CPS. Our findings reveal some strengths and

weaknesses of AI-enabled CPS and highlights an opportunity of

strategically combining AI-enabled CPS with traditional CPS. Fur-

thermore, our analysis of two widely used falsification techniques

on AI-enabled CPS motivates further improvement of these tech-

niques to account for the unique characteristics of AI controllers,

in order to build safe and reliable CPS in the age of AI.
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