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Abstract—Software developers often resort to Stack Overflow
(SO) to fill their programming needs. Given the abundance of
relevant posts, navigating them and comparing different solutions
is tedious and time-consuming. Recent work has proposed to
automatically summarize SO posts to concise text to facilitate
the navigation of SO posts. However, these techniques rely
only on information retrieval methods or heuristics for text
summarization, which is insufficient to handle the ambiguity and
sophistication of natural language.

This paper presents a deep learning based framework called
ASSORT for SO post summarization. ASSORT includes two
complementary learning methods, ASSORTs and ASSORT;s,
to address the lack of labeled training data for SO post
summarization. ASSORTs is designed to directly train a novel
ensemble learning model with BERT embeddings and domain-
specific features to account for the unique characteristics of SO
posts. By contrast, ASSORT;s is designed to reuse pre-trained
models while addressing the domain shift challenge when no
training data is present (i.e., zero-shot learning). Both ASSORTg
and ASSORT;s outperform six existing techniques by at least
13% and 7% respectively in terms of the F1 score. Furthermore,
a human study shows that participants significantly preferred
summaries generated by ASSORTs and ASSORT;s over the best
baseline, while the preference difference between ASSORTs and
ASSORT;s was small.

Index Terms—Stack Overflow, Text Summarization, Deep
Learning

I. INTRODUCTION

Online Q&A forums such as Stack Overflow (SO) have be-
come an integral part of modern programming workflow [1]-
[4]. However, locating essential information in online posts
can be time-consuming since there are often multiple relevant
posts to consider, and some posts can be lengthy. This is
confirmed by a recent survey with 72 professional software
developers [5]. Participants complained that sifting through
many online posts was cognitively demanding and wished to
get tool support for quickly navigating online posts.

Generating concise summaries of SO posts is a promising
way to facilitate the navigation of SO posts [5]-[8]. Nadi
and Treude experimented with four approaches to capture
the gist of a SO post by extracting essential sentences from
it [6]. They conducted a user study with 43 developers and
confirmed that seeing essential sentences in a SO post indeed
increased developers’ confidence when assessing the relevance
and quality of the post. However, they also found that selecting
sentences only based on heuristics or information retrieval
(IR) methods was not sufficient. Indeed, these approaches are
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inherently limited since they lack the flexibility of handling
ambiguous or sophisticated narratives in natural language.

The Natural Language Processing (NLP) community has
made significant progress in text summarization using deep
learning (DL) [9]-[13]. Those DL-based approaches require
to be trained with massive parallel corpora of text documents
and summaries. For example, the CNN/DailyMails dataset [14]
contains 286K pairs of news articles and human-written sum-
maries. However, no such large datasets exist for SO posts,
except for a recent dataset named SOSum [15]. While SOSum
contains manually curated summaries for 2,278 SO answer
posts, it is still much smaller compared with general-domain
corpora such as CNN/DailyMails. Furthermore, no experiment
has been done to prove that this dataset is sufficient to train a
DL model for summarizing SO posts.

To bridge the gap, we propose a framework for SO post
summarization, ASSORT (Automated Summarization of Stack
OveRflow posT). ASSORT provides a novel supervised model
ASSORTg to account for the unique characteristics of SO
posts. First, ASSORTg uses a combination of BERT embed-
dings and domain-specific features to characterize sentences
in a SO post. Second, since answers to different types of
questions have different linguistic norms, we train a question
classifier and separate models with the same BERT-based
architecture for different types of questions. Third, to account
for the uncertainty of the question classifier, the outputs of
these models are then ensembled based on the probability
distribution of the question classifier, as shown in Figure 2.

Furthermore, since acquiring labeled training data is costly,
ASSORT also includes an indirect supervision method called
ASSORT; g, which does not need to be trained with any labeled
SO data. ASSORT;gs makes use of supervision signals from
pre-trained models in another domain, such as news articles,
for SO post summarization. To handle domain shift issues,
ASSORT;s uses a pre-trained Natural Language Inference
(NLI) model to trace back to key sentences in the original SO
post based on the initially generated summary. Compared with
the initially generated summary, which may contain inaccurate
terminologies and narratives due to domain shift, extracting
aligned sentences from the original post can more accurately
capture the gist of the post.

We evaluate both learning methods in ASSORT with the
comparison to a BERT-based text summarization model [16],
which is fine-tuned with the same SO training data as AS-
SORTg. We also select three heuristics-based methods and



one unsupervised learning method from prior work [6], [17],
[18] as baselines. We find that both ASSORTg and ASSORT;g
outperform all baselines by at least 13% and 7% in terms of
the F1 score. This implies that only finetuning a general model
with a relatively small dataset such as SOSum [15] is not suffi-
cient. To improve training efficiency, it is necessary to account
for the unique characteristics of SO posts. Furthermore, since
ASSORT;g is not trained on any SO data, it achieves lower
accuracy than ASSORTg. However, when less than 20% of the
original training data are available, ASSORT;g achieves better
summarization accuracy than ASSORTg. This implies that
indirect supervision remains a promising yet cheap alternative
for building generalizable models for specific domains when
there is a lack of labeled training data.

We conduct a qualitative user study with 12 participants
to evaluate the quality of summaries generated by different
techniques. Compared with the best baseline model [16],
the majority of participants (76%-85%) preferred summaries
generated by ASSORTg or ASSORT;g in terms of usefulness,
comprehensiveness, and conciseness. Participants found the
summaries generated by ASSORTg more concise and useful
in practice, while they found the summaries generated by AS-
SORT;g more comprehensive and provided a better overview.
Overall, neither ASSORTg or ASSORT;g really triumph over
each other according to user feedback.

In summary, this work makes the following contributions:

o We design a new supervised model that generates concise
and self-contained summaries of SO posts. This model
accounts for the uniqueness of SO posts and achieves
state-of-the-art accuracy in SO post summarization.

« We propose a new indirect supervision method to further
tackle the challenge of lacking labeled training data in
SO post summarization. We demonstrate the feasibility
of developing models with acceptable accuracy but with
no cost of data labeling.

o We conduct a comprehensive evaluation of the proposed
learning methods with six comparison baselines, an ab-
lation study, and a qualitative user study.

The rest of the paper is organized as follows. Section II
describes a motivating example for generating post summaries
to facilitate the navigation of SO posts. Section III defines
the SO post summarization task. Sections IV and V describe
the supervised and indirect supervision models respectively.
Section VI describes the evaluation design and setup. Section
VII describes the evaluation results. Section VIII discusses the
implications, threats to validity, and future work. Section IX
describes the related work. Section X concludes this work.
Section XI describes the data availability.

II. MOTIVATING EXAMPLE

This section illustrates how summarizing SO posts helps
developers quickly navigate SO posts and get an overview
of various answers given by other developers. Suppose Alex
is an Android developer and she wants to transfer key-value
pairs between two layers of a Spring MVC framework. She
knows both HashMap and HashTable can serve as the data

structure for this task. Yet she is not sure about the pros and
cons of these two APIs. So she searches online.

The first search result from Google is a Stack Overflow
question— “What are the differences between a HashMap and
a HashTable in Java?”' There are 35 answer posts to this
question. Alex finds it time-consuming to read all of them.
So she decides to first read the accepted answer. The ac-
cepted answer (Post 40878) points out three major differences
between HashMap and HashTable: (1) HashTable is
synchronized, whereas HashMap is not; (2) HashTable
does not allow null keys or values; (3) HashMap has the
flexibility to be replaced with LinkedHashMap. Alex finds
this answer helpful, but she is not sure how comprehensive
this answer is.

Alex starts reading other highly voted answers to check if
they include any important information not covered by the
accepted answer. However, she finds herself submerged by
the abundant information in those posts. Since many posts
are lengthy with details that she does not care about, Alex
spends most of her time locating helpful information in those
posts. For example, Figure 1 shows the second answer (Post
41454) in this thread. It is a long post with 4 code snippets.
Yet the gist of it is a simple message—the synchronization
in HashTable is not sufficient, and synchronized HashMap
and ConcurrentMap are better choices. Without any tool
support, Alex has to read the entire post linearly to get this
key message, which can take quite a few minutes.

Like many other developers, Alex only reads a handful of
answers and returns to her own code due to her limited time
budget [2], [19], [20]. This inevitably makes her overlook
answers that are not highly ranked but contain useful infor-
mation that she is unaware of. For example, the 20th answer
(Post 37031553) mentions that HashMap has O(log(n))
complexity and is faster than HashTable. None of the top
five answers mentions this. If performance is a top concern to
Alex, reading this post can help Alex make a more informed
decision. However, without any tool support, Alex is unlikely
to reach this deep in the thread practically.

ASSORT helps Alex by automatically summarizing each
answer post into concise text, so Alex can get a quick overview
of many posts and prioritize which posts to spend more time
on. In this way, she can make a more informed decision on
which API to use. Specially, we build a Chrome extension
for Stack Overflow, which highlights summative sentences
from each post and renders a list of post summaries, as
shown in Figure 1. By looking at the navigation panel, Alex
quickly realizes that three answers mention HashTable is
synchronized. By contrast, the other four answers suggest
staying away from HashTable. Alex is interested in the
second answer since its author expressed a strong opinion
against HashTable. After clicking on it, Alex jumps to the
corresponding answer, where three summative sentences have
been highlighted as navigation cues. The first sentence points
out that the synchronization in HashTable is not sufficient,
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Note, that a lot of the answers state that Hashtable is synchronized. In practice this buys you] ° A

wvery little.|The synchronization is on the accessor/mutator methods will stop two threads
766 adding or removing from the map concurrently, but in the real world, you will often need
additional synchronization.

A very common idiom is to "check then put" —i.e. look for an entry in the map, and add it if it
does not already exist. This is not in any way an atomic operation whether you use Hashtable

Or HashMap .

An equivalently synchronised HashMap can be obtained b;l:

Collections.synchronizedMap(myMap);

But to correctly implement this logic you need additional synchronisation of the form:

synchronized(myMap) {
if (!myMap.containsKey("tomato"))
myMap.put("tomato", "red");

(D Essential sentences
highlighted as
navigational cues

Even iterating over a Hashtable 's entries (or a HashMap obtained by

Collections.synchronizedMap ) is not thread-safe unless you also guard the map against
being modified through additional synchronization.

Implementations of the ConcurrentMap interface (for example ConcurrentHashMap ) solve|

some of this by including thread safe check-then-act semantics such as:

ConcurrentMap.putIfAbsent(key, value);

Hashtable is synchronized, whereas HashMap is not.

Sep 13, 2018 i 4131

Note, that a lot of the answers state that Hashtable is synchronized. In
practice this buys you very little.

Code available ~ May 15, 2021 1 766

There's nothing about Hashtable that can't be done using HashMap or
derivations of HashMap, so for new code, | don't see any justification
for going back to Hashtable.

Aug 7,2018 1 41

The HashMap class is roughly equivalent to Hashtable, except that it is
non synchronized and permits nulls.
May 14, 2021 1 218

Like Tim Howland pointed out, you might use ConcurrentHashMap
instead.
Dec 4, 2017 1% 149

Seriously though, you're better off staying away from Hashtable
altogether.

Mar 25, 2014 16 144

@ List of answer posts with
HashMap is non synchronized. most summative sentences

May 6, 2017 1 101 displayed
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Fig. 1: A Chrome extension built upon ASSORT. On the left side, summative sentences are highlighted in yellow. On the right
side, a navigation panel provides a bird’s-eye view of the thread by showing the first sentence in the summary of each answer.

while the second and third sentences propose synchronized
HashMap and ConcurrentMap as alternatives. Alex feels
that these highlighted sentences summarize the gist of the
answer well, so she returns to the navigation panel to go
deeper in the thread. As she scrolls down the panel, she notices
the summary of the 20th answer—O(log(n)) for HashMap
vs. O(n) in HashTable. This indicates that HashMap has
lower time complexity than HashTable. Alex dives into this
answer for details, as performance is always a top concern for
her. Without ASSORT, this information would have been buried
deep in the thread and unlikely to be discovered. Being aware
of this information, Alex now feels more confident in making
an informed decision between these two APIs.

III. TASK DEFINITION

We introduce the definition of Stack Overflow Post Sum-
marization as follows: Given a SO answer post consisting of
N sentences, the goal is to select a small set of sentences to
form a succinct and self-contained summary. Essentially, this
can be viewed as a contextualized sentence classification task
where a sentence can either be in or not in the summary.

This task is also known as Extractive Summarization (ES)
in NLP. It is in contrast to another type of summarization
called Abstractive Summarization (AS). Instead of selection
summative sentences from the original document, AS gener-
ates new text to summarize the document [21]. Compared with
ES, a unique challenge in AS is that distorted or fabricated
text is likely to be introduced during text generation [22], [23].
Several studies have shown that factual inconsistency occurs
in up to 30% of abstractive summaries [24]-[27]. Furthermore,
since most abstractive summarization models are pre-trained
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Fig. 2: An overview of ASSORTg

on news articles or general-domain corpora, such errors may
become more prevalent when reusing those models on SO
posts due to domain shift.

In this work, we focus on extractive summarization as the
first step towards SO post summarization while leaving the
more challenging abstractive summarization task as future
work. In Section IV, we first propose a supervised learning
method with a novel model architecture tailored for SO posts.
Then in Section V, we propose an indirect supervision method
that reuses pre-trained models from another domain while
addressing domain shift issues via natural language inference.

IV. SUPERVISED POST SUMMARIZATION

ASSORT includes a supervised learning method named AS-
SORTg. As shown in Figure 2, ASSORTg takes three phases to
summarize a SO answer post. Since answers to different types
of questions follow different linguistic patterns, ASSORTg first
predicts the type of the SO question (Phase I). To account for
the uncertainty of the question classifier, the answer post is
fed into three sentence classification models separately, each



of which is trained for one type of SO questions (Phase II).
Finally, ASSORTg ensembles the predictions of these models
based on the likelihood of the question type to generate the
final summary (Phase III).

A. Question Classification

While manually inspecting SO answer posts, we observed
that answers to different kinds of questions have different
linguistic forms. For example, answers to a how-to question
often contain a step-by-step solution, while answers to a
conceptual question often contain a definition or description
of the concept. Based on this insight, we decide to first
categorize SO posts based on their question types and then
train separate post summarization models for different types
of questions. We follow the SO question taxonomy from prior
work [15], [28]-[31] and consider three representative types
of SO questions—how-to questions, conceptual questions, and
bug fixing questions. How-to questions ask for instructions for
achieving a task, e.g., “how do I undo the most recent local
commits in Git?”. Conceptual questions ask for clarifications
on a concept, e.g., “what are metaclasses in Python?”. Bug
fixing questions ask for solutions to fix some issues, e.g. “git
is not working after macOS Update”.

We develop a Support Vector Machine (SVM) classifier to
categorize SO posts based on their question titles. We train
it with a combination of 506 classified SO questions from
SOSum [15] and 365 new questions. In total, our dataset
includes 301 how-to questions, 305 conceptual questions, and
265 bug-fixing questions. We choose these three types of
questions, since they are the most common question types,
covering 77% of SO questions based on prior work [29]. We
discard questions that did not belong to the three types of
questions when curating the dataset.

To select and label the additional 365 questions, the first
author first ranked all SO questions by view count in descend-
ing order. Then, he inspected these questions and manually
classified them based on the types until he found 365 ques-
tions belonging to one of the three types of questions under
investigation. Then, the first author and another undergraduate
student independently labeled the summative sentences in
the answer posts of these questions following the labeling
heuristics described in the SOSum paper [15]. In total, they
labeled 785 answer posts under these 365 questions. The
Cohen’s Kappa score before the discussion is 0.72, which
implies a substantial agreement [32]. The two labelers met
to discuss their labels and resolved all disagreements. This
labeling process took about 73 man-hours.

Despite the simplicity of SVM, this classifier achieves
reasonable accuracy (78%) with 8:1:1 train/dev/test data split
and 10-fold validation. To further account for the potential
misclassification of the SVM classier, ASSORTg adopts an
ensemble mechanism that incorporates the probability dis-
tribution of different types of questions predicted by the
SVM classifier (Section IV-C). An ablation study confirms the
benefit of incorporating question classification into ASSORTg,
improving its Fl-score by 9% (Section VII-B).
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Fig. 3: The architecture of the sentence classifier

B. Summative Sentence Identification

We train separate models to identify summative sentences
for the three representative types of SO questions. These
models share the same model architecture but are trained on
answer posts to different types of questions to capture unique
linguistic norms and writing styles of each question category.
We explain the model architecture below.

Figure 3 gives an overview of the model architecture.
ASSORTg performs hybrid learning by combining the semantic
representation from a BERT model and a multifaceted set
of domain-specific features. Each sentence in the given post
is encoded into a vector embedding, which is then fed into
a feedforward neural network (FNN) to decide whether the
sentence is a summative sentence.

In this work, we use a BERT model that is fine-tuned with
152 million sentences from Stack Overflow [33]. Given a
sentence from a SO post, ASSORTg computes its embedding
from BERT by averaging the embedding vectors of all tokens
in the sentence. The incorporation of deep contextualized
sentence embeddings helps ASSORTg capture the semantics
of a given sentence. This is confirmed by the ablation study
in Section VII-B, where the inclusion of BERT increases the
F1 score of our model by 17%.

While the contextualized embeddings from BERT are effec-
tive in capturing sentence semantics, they are not sufficient to
capture specific features, such as bold text, which human read-
ers often rely on to identify summative sentences. Therefore,
we further design a set of domain-specific features to capture
the semantic, structural, and stylistic information cues in SO
posts. We elaborate on these features below.

First, we design five semantic features to select summative
sentences based on their content.

o Entity Overlap. If a sentence mentions a software entity
that is also mentioned in the question title or in a SO tag
of the question, this sentence may provide some directly
relevant information for the question. In this work, we
use SEthesaurus [34] to identify software entities in a
sentence. Let I, be the combination of software entities
in the question title and the SO tags in the question. Let
FE; be the set of software entities mentioned in a sentence



in the answer post. The entity overlap is computed as
|Eq| 0 |Es|/|Eq|-

o Comparative Adjective. This feature captures whether a
sentence contains a comparative adjective. Sentences con-
taining a comparative adjective often contain information
that helps readers compare two APIs or two solutions,
e.g., “the stack is faster because all free memory is
always contiguous.”

o Superlative Adjective. This feature captures whether a
sentence contains a superlative adjective. Similar to com-
parative adjectives, sentences with superlative adjectives
often indicate answerers’ strong inclination for or against
an approach, API, or bug fix, e.g., “there is no doubt
that application/json is the best MIME type for a JSON
response.”

o Imperative Sentence. This feature captures whether a
sentence is an imperative sentence. Imperative sentences
often contain instructions to accomplish a programming
task or to fix a bug, e.g., “use git revert commit-id.”

o Linguistic Patterns. As we label SO posts for training
ASSORTg, we summarize 19 phrases that may imply
important information in an answer (Table I). Specifically,
the first author randomly sampled 100 posts from the
labeled dataset and manually analyzed the summative
sentences of these posts. He identified an initial set
of common phrases that were shared across multiple
sentences. He then applied these patterns back to those
sentences to measure the coverage and iteratively refined
the patterns. Similar procedures have been adopted in
prior work to identify linguistic patterns [5], [17], [35].
Each pattern corresponds to a dimension in the sentence
embedding. If a linguistic pattern is matched, then the
corresponding dimension is set to 1, otherwise 0.

Second, we design two structural features to select sum-
mative sentences based on their relations with other sentences
and codes in the post.

« Sentence Position. This feature captures the position of a
sentence in a given post. This feature is designed based
on our observation that the leading sentences in many SO
posts can serve as a good summary of the post.

e Code Adjacency. This feature indicates whether a sen-
tence is around a code snippet. It is designed based on
our observation that sentences around a code snippet
enclosed by a pre tag often contain information cues
for a programming task solution or a bug fix.

Third, we design three stylistic features to capture format-
ting styles that are used to highlight important information in
a SO post.

o Inline Code. This feature indicates whether a sentence
contains an inlined code fragment. This feature is de-
signed based on our observation that, for how-to ques-
tions and bug-fixing questions, answerers sometimes sug-
gest an alternative API, pinpoint a problematic piece of
code, or provide a short code fragment as a solution.

TABLE I: Linguistic patterns for sentences that may contain
important information

No. Phrase No. Phrase
1 However, ... 11 In practice, ...
2 First, ... 12 In fact, ...

3 In short, ... 13 Otherwise, ...

4 In this case, ... 14 If you care, ...

5 In general, ... 15 In contrast, ...

6 Finally, ... 16 On the other hand, ...
7 Then, ... 17 Below is ...

8 Alternatively, ... 18 Additionally, ...

9 In other words, ... 19 Furthermore, ...

10 In addition, ...

e Bold Text. This feature indicates whether a sentence
contains bold text. In SO posts, answerers often highlight
important terms or statements in bold to draw attention
from readers.

 Step in a List. This feature indicates whether a sentence
is the first sentence of an item in a bulleted or numbered
list. This feature is designed based on our observation that
for how-to questions, many answerers typically provide
a list of steps to accomplish a task.

The ablation study (Section VII-B) confirms the usefulness
of these domain-specific features. Specifically, including these
features leads to an increase of 6% in the F1 score. We also
conducted an experiment to measure the contribution of each
feature by removing each of them and evaluating the accuracy
degradation. The results are included in the Supplementary
Material.

C. Ensemble Inference

To account for the uncertainty of question classification in
Phase I, we design an ensemble mechanism that merges the
predictions from the three sentence classifiers to make the final
decision about whether a sentence should be included in the
summary.

The ensemble mechanism takes two input: (1) the softmax
probabilities of k categories (k = 3 in this case) predicted
by the question classifier, p1,...,pr; (2) the probabilities of
a sentence being a summative sentence from each sentence
classifier, A1, ..., Ax. The final score ¢ of a sentence is defined
as: ¢ = Zle piA;. If a sentence has a final score greater than
a threshold 6, it is selected as a summative sentence. We
experimentally determine 6 to be 0.5 on a validation set of 303
posts (10% of the dataset) with the objective of maximizing the
F-1 score. After every sentence in an answer post is classified,
ASSORT collects all the selected sentences and outputs them
as an extractive summary for the answer post.

V. POST SUMMARIZATION VIA INDIRECT SUPERVISION

While supervised learning can achieve superior perfor-
mance, obtaining a large amount of labeled data is often costly,
especially in specific domains such as software engineering.
Therefore, we propose an indirect supervision approach, AS-
SORT[g, to overcome this limit. Instead of acquiring labeled



data for direct supervision, ASSORT g uses supervision signals
from pre-trained models in another domain, such as news
article summarization. To address the challenge of data shift
in cross-domain transfer, we use a pre-trained Natural Lan-
guage Inference (NLI) model to select summative sentences
in the original post based on the summary generated by the
pre-trained text summarization model. Figure 4 provides an
overview of our approach.

BART-large

SO post — CNN —> Abstractive summary

premise

hypothesis

Sentence to classify DocNLI —> Decision

Fig. 4: An overview of ASSORTg

In this work, we use BART-large-CNN [36] as the pre-
trained text summarization model. Unlike our supervised
model in Section IV, BART-large-CNN is an abstractive sum-
marization model. In other words, BART-large-CNN generates
a summary in its own words via an autoregressive decoding
process, rather than selecting summative sentences in the
input document. Specifically, BART-large-CNN is based on
BART [10], a denoised auto-encoder that encodes an input
document to a high-dimensional embedding for text recon-
struction. In BART-large-CNN, the initial BART model is fine-
tuned to generate text summaries using the CNN/DailyMail
corpus [14], which contains 300K news articles and their
human-written summaries. In this work, we select BART-
large-CNN, since it is a representative and strong summariza-
tion model that outperforms other transformer-based models
such as [13] by up to 6 points on CNN/DailyMail in ROUGE-
based metrics [10].

While BART-large-CNN is demonstrated effective on news
article summarization, it suffers from domain-shifting issues
when applied to a different domain, such as SO post sum-
marization. Furthermore, recent studies have shown that ab-
stractive summarization models may introduce factual incon-
sistencies in generated text compared with original text [22],
[23]. Table II shows an abstractive summary generated by
BART-large-CNN. The last sentence in it (highlighted in red)
is exceptionally long and contains broken English with some
hallucinated information.

Despite the broken English, this sentence is not fully made
up by BART-large-CNN. It is based on two sentences in
the original post (highlighted in green). In fact, these two
sentences provide a good summary of the last paragraph in
the original post. Though BART-large-CNN recognizes them,
it fails to generate an eloquent summary due to domain shift.

To address this issue, we propose associating abstractive
summaries to the original post’s corresponding sentences using
a pre-trained Natural Language Inference (NLI) model. The
task of NLI [37] studies to what extent a premise entails,
contradicts, or remains neutral with a hypothesis. For example,

TABLE II: An abstractive summary generated by BART-large-
CNN and the summary generated by our approach

Original post [Post 438095]

There is a potential problem here with regard to workflow
persistence.

If you create long running workflows that are persisted in a
database, these workflows are not reloaded into memory until
there is some external event that reloads them. As there they
are responsible for triggering the event themselves but cannot
until they are reloaded. And we have a catch 22 :-(.

The proper way to do this is using an external service. And
while this might feel like dividing the code into two places it
really isn’t. The reason is that the workflow is responsible for
the big picture, IE what should be done. And the runtime service
is responsible for the actual implementation or how it should
be done. That way you can change the how without changing
the why and when part. [Source of the ineloquent sentence in
BART-large-CNN’s summary]

Abstractive summary generated by BART-large-CNN

There is a potential problem with regard to workflow persis-
tence. If you create long running workflows that are persisted
in a database they will not be able to restart until there is an
external event reloading them. The proper way of doing this is
using an external service which can change the how part without
changing what it should be done or when it’s better than having
two separate processes for different tasks as each one does their
own thing but doesn’t agree on exactly who must carry out its
function at any given time. [broken English]

Summary generated by our indirect supervision approach

There is a potential problem here with regard to workflow
persistence. The proper way to do this is using an external
service. That way you can change the how without changing
the why and when part.

suppose we have a hypothesis sentence, “a kid ate a fruit”, and
a premise sentence, “a boy ate an apple”. An NLI model will
predict that the premise entails the hypothesis. However, if the
hypothesis is changed to “a kid ate a banana”, the prediction
will becomes to neutral or contradiction.

We use a pre-trained NLI model to decide which sentence
in the original SO post is entailed by the abstractive summary
and thus should be included in the final summary. Specifically,
we use a ROBERTa model that is pre-trained on DocNLI [38],
a document-level NLI dataset. DocNLI covers multiple text
genres, such as news, fiction, and conversations, with multi-
sentence (i.e., document) premises and single-sentence hy-
potheses. Given a summary generated by BART-large-CNN,
our approach checks the logical relationship between the sum-
mary (i.e., the premise) and every sentence in the original post
(i.e., the hypotheses). The DocNLI model will then produce
a probability distribution over the three relationships—entail,
contradict, and neutral. Our approach selects a sentence as
part of the final summary if the entailment probability is the
higher than the other two probabilities.
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VI. EVALUATION

We conduct both quantitative experiments and user studies
to answer the following four research questions:

o RQI: How effective is our supervised model, ASSORTg,
in SO post summarization?

« RQ2: To what extent does each component in ASSORTg
contribute to its effectiveness?

o RQ3: How does our indirectly supervised model, AS-
SORT;g, compare to our surprised model?

o RQ4: How do real programmers perceive the summaries
given by our models?

A. Experiment Setup

In addition to the 2,278 labeled posts from SOSum [15],
we further manually labeled 785 answer posts following the
same labeling procedure as described in [15]. The labeling
process is described in Section IV. We use these 3,063 posts
for training and evaluation. These posts are from 785 SO
questions, including 254 how-to questions, 322 conceptual
questions, and 209 bug-fixing questions.

We empirically decided the model structure and hyperpa-
rameters for the classification head of ASSORTg. Specifically,
we experimented with different kinds of models, as shown in
Table III. We chose feedforward neural network (FNN) since
it performed the best. We also experimented with different
numbers of hidden layers in the FNN and eventually chose 1
hidden layer, as shown in Table IV.

TABLE III: Model Accuracy with Different Types of Classi-
fication Heads

l | F1 | A |
Feedforward NN 0.71 -
Random forest 0.56 | -0.15
Decision tree 0.54 | -0.17
Linear regression 0.65 | -0.06
Logistic regression 0.63 | -0.08
Ada boost 0.59 | -0.12
Naive Bayes Classifier | 0.62 | -0.09

TABLE IV: Model Accuracy with Different Numbers of
Hidden Layers in the FNN

[ # hidden layers | Precision | Recall [ F1 |

1 0.73 0.69 0.71
2 0.69 0.71 0.70
3 0.73 0.71 0.72
4 0.73 0.70 0.71

To train ASSORTg, for each type of questions, we randomly
split the corresponding answer posts into training, develop-
ment, and test sets with a split ratio of 8:1:1. Then, we train a
summative sentence identification model for answers to each
type of question following the model architecture in Figure 3.
During training and testing, an answer post to be summarized
is broken down into individual sentences. In total, we have

14,165 sentences for the 2,424 answer posts in the training set.
Each model was trained with a batch size of 512 sentences in
150 epochs. In each batch, each sentence is fed to ASSORTg
one by one with the corresponding question title. We use the
Adam optimizer [39] for training and the learning rate is set
to le™®. Training ASSORTg took 3 hours on a single GPU
(NVIDIA GeForce GT 1030).

To design an ablation study to answer RQ2, we create four
variants of ASSORTg with one key component removed in
each variant. The four key components are: (1) the BERT
embeddings, (2) the domain-specific features, (3) the question
classifier, (4) the ensemble mechanism. Specifically, when
the question classifier is ablated, ASSORTg uses a sentence
classifier trained on all types of questions to predict the final
score of a sentence. When the ensemble mechanism is ablated,
ASSORTg first predicts the question type of a given post and
then only uses the sentence classifier for the predicted question
type to identify summative sentences, rather than using all
three classifiers.

To answer RQ3, we first compare ASSORT g against AS-
SORTg on a full training setting where we train ASSORTg with
the entire training set. Then, we compare them in different low-
resource settings where only a subset of the original training
data is available. In those low-resource settings, we randomly
select SO posts from the original dataset to make subsets of
training data. Since ASSORT;g does not require any training
data, the low-resource baselines are created to make a fair
comparison between ASSORTg and ASSORT;g in conditions
where training data are scarce.

B. Compared Baselines

We select a state-of-the-art extractive summarization model
on the general domain [16] and also fine-tune it on the same
training set of 2,424 SO posts as ASSORTg. Furthermore, we
select three heuristics-based methods and one unsupervised
method that can perform sentence-level summarization from
prior work [6], [17], [18]. These four methods have also been
experimented in [6].

(1) BertSum [16] is an extractive summarization model that
first uses BERT to encode sentences and then uses a
transformer to select summative sentences [16]. It out-
performs several previous techniques [11], [40]-[42] on
two popular text summarization datasets—NYT [43] and
CNN/DailyMail [14]. In this experiment, we use the
checkpoint of BertSum that has the best performance on
CNN/DailyMail.

(2) BertSum (fine-tuned) [16] is a fine-tuned version of Bert-
Sum. It is fine-tuned with the training data of ASSORTg,
including 2,424 SO posts and their summaries.

(3) wordpattern identifies essential sentences in a SO post
using a set of 360 word patterns. These patterns are
initially designed by Robillard and Chhetri [17] to iden-
tify sentences containing indispensable knowledge in API
documentations.

(4) simpleif is a technique proposed by Nadi and Treude [6].
It is designed based on the insight that essential sentences



may contain contextual information expressed in the form
of conditions. Thus, simpleif identifies all sentences that
have the word “if” in them as essential sentences.

(5) contextif is another technique proposed by Nadi and
Treude [6]. It uses a set of heuristics to identify essential
sentences that carry technical context and are useful.

(6) lexrank is a commonly used unsupervised text summa-
rization approach [18]. It uses a stochastic graph-based
method to compute the relative importance of sentences
in a document and generates an extractive summary by
selecting the top k sentences. We use the default £ value,
5, in an open-source implementation of lexrank [44].

We do not compare with paragraph-level summarization
techniques such as AnswerBot [5] and CraSolver [45], since
it is not a head-to-head comparison. Take AnswerBot as an
example. First, the problem setting is different. AnswerBot
summarizes multiple SO threads, while ASSORT summarizes
key points in a single post. Second, even if we adapt An-
swerBot to only summarize a single post, AnswerBot can
only produce a summary by selecting paragraphs. By contrast,
ASSORT produces a more fine-grained summary by selecting
sentences. Thus, AnswerBot always generates longer and more
coarse-grained summarizations than ASSORT, leading to low
precision on the benchmark.

C. Evaluation Metrics

We use three metrics—precision, recall, and F1 to measure
the effectiveness of our methods and the comparison baselines
in SO post summarization. Each metric is calculated at the
sentence level. Given a set of summative sentences in a set of
SO posts G, let M be the set of summative sentences selected
by an extractive summarization model. The precision of the
model is calculated as |G n M|/|M|. And the recall of the
model is defined as |G n M|/|G|. Furthermore, we measure
the F1 score, which combines the precision and recall of a
model into a single metric by taking their harmonic mean.

We make sure both ASSORTg and ASSORT;g¢ and all the
baselines are evaluated with the same test set (i.e., 304 posts
and their summaries) to make the comparison fair. A 10-fold
validation is performed when calculating the metrics for our
approaches and all the baselines.

D. User Study Design

To answer RQ4, we conduct a within-subjects user study to
evaluate the summary quality. We recruit 12 graduate students
through the department mailing list from an R1 university.
Participants have an average of four years of programming
experience. We randomly selected 40 answer posts from our
dataset, including 13 how-to questions, 13 conceptual ques-
tions, and 14 bug-fixing questions. These tasks were randomly
sampled from the test set while ensuring a balanced number
of answers in each category. In each user study, we select 10
out of the 40 answer posts and ask the participant to review
their summaries. We counterbalance the post assignment so
that each post is evaluated by three different participants.

For each answer post, participants first report their expertise
of the concepts in the question on a 7-point scale. 1 means
“Haven’t even heard of it before” and 7 means “I am an
expert”’. Then, they will be provided with the question post,
the answer post, and the summaries generated by ASSORTg,
ASSORT;g, and BertSum (fine-tuned). Specifically, we select
BertSum (fine-tuned) as our baseline in the user study since it
performs the best among all six baselines in the quantitative
experiment. The participants first read the question to under-
stand the context and then read the answer post to understand
the content to be summarized. The participants are then asked
to read all three summaries and evaluate the quality of these
summaries by answering the following five multiple-choice
questions.

(1) Which summary provides the most helpful information?

(2) Which summary provides the best overview of the post?

(3) Which summary provides the most comprehensive infor-
mation?

(4) Which summary is the most concise without being incom-
plete?

(5) Which summary do you prefer to see in practice?

To mitigate bias, the order of summaries is randomized to
mitigate bias and we also do not reveal which model generated
which summary. At the end of the user study, participants
answer several open-ended questions about whether they wish
to see SO post summaries when browsing SO and what kinds
of characteristics an ideal SO summary should possess.

VII. RESULTS
A. RQI: SO Post Summarization Accuracy

Table V shows the summarization accuracy of ASSORTg
and the baselines after 10-fold validation is performed. AS-
SORTg achieves the best results in all three metrics. Fur-
thermore, the domain shift from general text corpora to the
SO post corpus is non-trivial. The original BertSum model,
which is trained on news articles and their summaries from
CNNDailymails, only achieves an F1 score of 53%. While
fine-tuning BertSum with 2,424 labeled SO posts increases the
F1 score from 53% to 58%, it is still 13% below ASSORTg.
Given that BertSum also uses BERT for sentence encoding,
this result implies that directly reusing a pre-trained model,
even with finetuning, is not an optimal solution. Incorporating
domain-specific features and ensembling based on question
types are necessary to improve the effectiveness of SO post
summarization.

B. RQ2: Ablation Study

Table VI shows the ablation study results. On the one
hand, ablating the BERT embedding leads to the largest
accuracy degradation, 17% in the F1 score. This indicates
that incorporating deep contextualized embeddings from a
language model is critical for a domain-specific task such as
SO post summarization. On the other hand, only including
BERT is also not sufficient. Removing each of the other three
components, which are specifically designed to account for
the unique characteristics of SO posts, leads to a non-trivial



TABLE V: Comparison of ASSORTg and baselines

[ [ Precision [ Recall [ F1 |

ASSORTg * 0.73 0.69 0.71
BertSum * 0.47 0.60 0.53
BertSum (fine-tuned) * 0.51 0.67 0.58
wordpattern ¢ 0.40 0.03 0.06
simpleif ¢ 0.39 0.15 0.21
contextif ¢ 0.39 0.15 0.22
lexrank # 0.61 0.45 0.52

*: DL-based, o: heuristics-based, »: unsupervised

TABLE VI: Contribution of each component in ASSORTg

\ | Precision [ Recall | F1 |

ASSORTg 0.73 0.69 0.71
—w/o BERT 0.61 0.48 0.54
—w/o Domain-specific features 0.70 0.61 0.65
—w/o Ensemble 0.68 0.66 0.67
—w/o Question classifier 0.61 0.63 0.62

decrease in the F1 score. Specifically, the removal of domain-
specific features decreases the F1 score by 6%. This indicates
that deep contextualized embeddings alone cannot cover the
unique structural and linguistic patterns that distinguish SO
posts from general text data. Removing the question classifier
decreases the F1 score by 9%. This indicates that accounting
for different linguistic norms in answers to different types of
questions indeed helps. Removing the ensemble mechanism
leads to a decrease of 4% in the F1 score. This indicates that
the ensemble mechanism can help to alleviate the influence of
question classification errors.

C. RQ3: Supervision vs. Indirect Supervision

Figure 5 compares the accuracy of ASSORTg and AS-
SORT;s when various amounts of training data are available.
Given that ASSORT;g only uses pre-trained models and does
not require any training data, the accuracy of ASSORT;g
is constant (65%) in these settings. When all training data
(i.e., 2,424 posts and their summaries) is available, ASSORTg
outperforms ASSORT;g by 6%. This indicates that directly
training a supervised model is a better choice when there
are sufficient training data. However, when 20% or less of
the original training data is available, ASSORT;g outperforms
ASSORTg. Therefore, when the training data is small, indirect
supervision can be a better option than directly training a
model with small training data. Furthermore, with an F1
score of 65%, ASSORT;g outperforms all six comparison
baselines by 7% to 59%. This result is significant since the
best comparison baseline is fine-tuned on all training data.
This implies that indirect supervision can be a promising yet
low-cost alternative compared with unsupervised approaches
and model fine-tuning.

D. RQ4: Human Evaluation

Figure 6 shows the choice of participants over the sum-
maries generated by ASSORTg, ASSORT;g, and BertSum (fine-
tuned) in five aspects. Overall, participants strongly preferred

ASSORT/s (no training data needed)
ASSORTg

0.8

0.6

F1 score

040,43

0.2

0

o oM 0% o®  or 0% 0® ol o® 0% 0
Percentage of train set

Fig. 5: The F1 score of the direct vs. indirect supervision
methods when various amounts of training data are available.
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29 (24%)

21 (17%)

Practical fZAEED) 38 (32%) 18 (15%)

BN ASSORTg B ASSORT;g BertSum (fine-tuned)

Fig. 6: Participants’ choices over different types of summaries
in five aspects

summaries generated by ASSORTg or ASSORT;g over Bert-
Sum (fine-tuned). Between ASSORTg and ASSORT;g, more
participants found summaries generated by ASSORTg more
helpful, concise, and practical. Yet more participants found
summaries generated by ASSORT g more comprehensive and
providing a better overview of the post.

Since each answer post and its summaries were reviewed by
three participants, we further analyzed the consistency among
those participants when they answered each multiple-choice
question. In 60% of the cases, the three participants assigned
to the same post consistently chose summaries generated
by ASSORT over BertSum (fine-tuned) in a multiple-choice
question. In 91% of cases, at least two out of three partici-
pants consistently chose either ASSORTg or ASSORT;g over
BertSum (fine-tuned). However, the choices between ASSORTg
and ASSORT;g were not very consistent among participants
assigned to the same post. In only 40% of cases, all three
participants consistently chose ASSORTg or ASSORTg. This
implies the participants chose between ASSORTg and AS-
SORTg largely based on their personal preference. Neither
ASSORTg or ASSORT g really triumph over each other.

We also investigated how participants’ expertise on concepts
in a SO question affects their preferences over post summaries.
As described in Section VI-D, participants first reported their
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Fig. 7: Choices of participants with different levels of expertise

expertise on a 7-point scale. We categorized their expertise
as “novice” if their rating is 1-2, “regular” if their rating is
3-5, and “expert” if their rating is 6-7. Figure 7 shows the
choices of participants with different levels of expertise. We
observed an tendency of favoring ASSORTg among novices
while an tendency of favoring ASSORT;g among experts. One
plausible reason for this is that novices prefer to see short
summaries and feel overwhelmed if a summary contains too
much information, while experts prefer to see more compre-
hensive information and feel less overwhelmed. Pearson’s Chi-
square test of independence shows that the choice difference
among participants with different levels of expertise for post
summaries is statistically significant (p = 0.0006).

In the final survey, 84% of participants confirmed they
would like to see post summaries when browsing SO posts.
For example, P4 elaborates, “seeing a concise yet informative
summary can help me quickly decide whether a post is
worth reading or not.” Another participant (P10) said, “most
information in a long post is useless to me, what I want is the
solution and solution only”.

VIII. DISCUSSION

Our experiment shows that only fine-tuning a general text
summarization model such as [16] is insufficient. Our su-
pervised approach, ASSORTg, achieves significantly higher
summarization accuracy by incorporating specific designs for
SO posts, such as question classification and domain-specific
features. This may carry a more general implication—as we
reuse models from NLP or ML, we should consider renovating
their model architectures and adapting them to account for the
unique characteristics of SE tasks.

Our indirect supervision approach, ASSORT g, is proposed
to address the challenge of lacking labeled data in SO post
summarization. ASSORT;g has achieved reasonable accuracy
and is proven to be a better choice when labeled data is
insufficient, e.g., less than 485 posts in our experiment setting.
Furthermore, our user study shows that while summaries
generated by ASSORT;s and ASSORTg were deemed good
in different aspects (e.g., comprehensiveness vs. conciseness),
there was no significant preference difference in general. This
implies that ASSORT;g could be an acceptable yet low-cost
solution in practice.

Both ASSORTg and ASSORT;g can be generalized to sum-
marize other types of SE documents, such as API documenta-
tion, tutorials, and bug reports. Since ASSORTg only uses pre-
trained models, it can be reused as-is. By contrast, ASSORTg
would benefit from several extensions, e.g., re-training a topic
classifier rather than a question classifier, re-designing some

domain-specific features based on the linguistic norms in the
target corpus. Furthermore, since ASSORT;g does not require
any labeled training data, it can also be used as a starting point
to explore the feasibility and opportunities of summarizing
other types of SE documents.

Threats to validity. In terms of internal validity, labeling
summative sentences in SO posts is a subjective task. There-
fore, different labelers will not necessarily select the same set
of summative sentences from the same post. In this work, two
labelers expanded SOSum with 785 answer posts retrieved
under 365 SO questions. We strictly follow the labeling
procedure established in [15]. The Cohen’s kappa score is 0.72
on the initial labeling results before discussion, which indicates
moderate agreement. Most disagreements were resolved after
discussion. In the final dataset, only those sentences that both
labelers agreed on are labeled as summative sentences.

In terms of external validity, since our dataset is constructed
by retrieving posts under the most popular questions, it in-
evitably favors popular tags, such as Java and Python. Our
dataset contains 1,089 unique tags, while there are more than
50K tags on Stack Overflow. The accuracy of ASSORTg may
drop a bit with unfamiliar topics due to unseen terminologies.
Furthermore, our current model is only trained with SO posts
to three common types of questions, since we aim to develop
a proof of concept and demonstrate its feasibility for the scope
of this work. To support other types of questions, one should
enrich our dataset and re-train the model to obtain optimal
accuracy. Finally, the accuracy of ASSORTg may also decrease
when reused as-is for other types of SE documents. This
is because ASSORTg includes unique designs for SO posts,
which is not applicable to other types of SE documents.

In terms of construct validity, our question classifier does
not always make the correct prediction. Sometimes, the bound-
ary between different question categories can be blurred
with questions like “How to fix headers-already-sent error
in PHP?”. This question should be classified as bug-fixing,
since it mentions an error. However, it is classified as how-fo
by our question classifier since the question title contains a
phrase “how to”. To mitigate this threat, ASSORTg includes
an ensemble mechanism that merges predictions from sepa-
rate summative sentence prediction models. Another threat to
construct validity lies in the user study design. In the current
design, participants were only asked to evaluate the quality of
the post summaries with regard to the SO question. However,
the usefulness of these summaries when being used to solve
real programming tasks remains to be determined.

Future work. Currently, ASSORTg only uses a feedforward
neural network as the classification head on top of BERT.
Prior work [16] has shown that the choice of classification
heads has an influence on model accuracy. It would be worth-
while to further experiment with other types of classification
heads, such as transformers and LSTMs. Furthermore, we
have only considered single-document summarization in this
work. It would be interesting to investigate how to perform
multi-document summarization on a thread of SO posts. The
challenge of multi-document summarization is not only to



shorten the text, but also to organize information around
the key aspects to represent diverse views. Compared with
extractive summarization, abstractive summarization may be a
more preferred solution, since it is capable of rephrasing sen-
tences from different posts and generating gradual transitions.
Diversity-based ranking algorithms such as Maximal Marginal
Relevance (MMR) [46] can also be considered here.

IX. RELATED WORK

SO post summarization. Several approaches have been pre-
sented to summarize SO posts to concise texts to facilitate
SO post navigation [S]-[7], [45]. AnswerBot extracts sum-
mative paragraphs from SO posts based on features such as
information entropy and paragraph position [5]. CraSolver
uses a similar multi-factor ranking mechanism to summarize
bug solutions [45]. Both AnswerBot and CraSolver generate
summaries at the paragraph level. By contrast, our approach
generates more fine-grained sentence-level summaries of SO
posts. Nadi and Treude experimented with four different
IR-based approaches to select essential sentences from SO
posts [6]. They conducted a survey with 43 developers and
found that while participants would like to get navigation
support for browsing SO, the IR-based approaches failed
to provide such support. Motivated by these findings, we
propose a novel DL-based framework that can more accurately
identify summative sentences in SO posts in this work. Several
approaches have been proposed to generate question titles for
SO threads based on code snippets [47], [48]. However, since
question title generation aims to summarize a question in
a one-liner, these approaches cannot be applied to SO post
summarization, which has a very different problem setting.
Text summarization for bug reports. There are several sum-
marization techniques for other types of SE documents such
as bug reports [49]-[53]. Liu et al. designed a new metric
called believability score, which measures the degree to which
a sentence is supported or refuted by other comments. Based
on the idea of believability score, they further developed
BugSum, which selects summative sentences in a bug re-
port [50]. Rastkar et al. created a small dataset with human-
annotated summaries for 36 bug reports and used it to train
a Logistic Regression classifier with 24 explicit features to
identify summative sentences in a bug report [51]. Mani et
al. experimented with four unsupervised models— Centroid,
MMR, Grasshopper, and Diverse Rank—on the task of bug
report summarization [52]. Unlike these techniques, we pro-
posed two learning paradigms for building DL models for SO
post summarization.

General text summarization. Many neural-based text summa-
rization techniques have been proposed recently [11], [12],
[16], [54]-[56]. For example, Liu et al. presented a BERT-
based model and trained it on CNN/DailyMails [16]. Narayan
et al. presented a CNN-based model that summarizes a single
news article into a one-liner and trained it with XSum [54].
In another work, Narayan et al. framed the task of text
summarization as a ranking problem and proposed a global
optimization method for training [11]. Dong et al. framed text

summarization as a contextual bandit problem, in which each
document is considered as a context and each combination
of selected sentences is an action to take [12]. While these
models perform well on news articles, reusing these models
in another domain, such as SO posts, is not an easy task due to
domain shift. In this work, we propose ASSORTg, a supervised
model that accounts for unique characteristics of SO posts
and demonstrate that it significantly outperforms a fine-tuned
version of BertSum (Section VII-A).

Other tool support for information seeking in SO. In addition
to text summarization, many other kinds of tool support have
been proposed to facilitate information seeking in SO [35],
[571-[70]. For example, SeaHawk [57] is an Eclipse plugin
that integrates SO into an IDE. Chatbot4QR [71] expands
a user query with tags of similar SO questions in order to
improve search results. Ye et al. [59] propose a re-ranking
mechanism for SO search results of a user-defined query
based on different search focus users may have. They identify
linguistic patterns in different types of queries and train
separate models based on query types to re-rank search results.
SISE uses linguistic patterns to identify sentences that mention
an API in SO posts and augments API documents with those
sentences [63].

X. CONCLUSION

In this work, we propose two complementary learning meth-
ods for automated post summarization in Stack Overflow (SO).
ASSORTg is a supervised method that accounts for unique
characteristics in SO posts via question classification, domain-
specific features, and ensemble inference. ASSORT;g, on the
other hand, is an indirectly supervised method that does not
require any labeled training data by leveraging a pre-trained
model from another domain while addressing the domain
shift issue via natural language inference. Both ASSORTg and
ASSORT g significantly outperform six existing techniques in
terms of summarization accuracy. ASSORT;g is demonstrated
to be a promising yet low-cost solution in a low-resource
setting. Furthermore, a user study shows that participants
consistently favored summaries generated by ASSORTg or
ASSORT g over the best baseline model, while the preference
difference between ASSORTg and ASSORT ;g was small. In the
future, we plan to extend ASSORT to support multi-document
summarization on the entire discussion thread and also apply
ASSORT to other types of SE documents.

XI. DATA AVAILABILITY
Our code and data have been made available in an anony-
mous GitHub repository for review.’
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