
SOSum: A Dataset of Stack Overflow Post Summaries
Bonan Kou, Yifeng Di
{koub,di5}@purdue.edu

Purdue University
West Lafayette, Indiana, USA

Muhao Chen
muhaoche@usc.edu

University of Southern California
Los Angeles, California, USA

Tianyi Zhang
tianyi@purdue.edu
Purdue University

West Lafayette, Indiana, USA

ABSTRACT
Stack Overflow (SO) is becoming an indispensable part of modern
software development workflow. However, given the limited time,
attention, and memory capacity of programmers, navigating SO
posts and comparing different solutions is time-consuming and
cumbersome. Recent research has proposed to summarize SO posts
to concise text to help programmers quickly assess the relevance
and quality of SO posts. Yet there is no large dataset of high-quality
SO post summaries, hindering the development and evaluation of
post summarization techniques. We present SOSum, a dataset of
2,278 popular SO answer posts with manually labeled summative
sentences. Questions in SOSum cover 669 tags with a median view
count of 253K and a median post score of 17. This dataset will foster
research on sentence-level summarization of SO posts and has the
potential to facilitate text summarization research on other types
of textual software artifacts such as programming tutorials.

CCS CONCEPTS
• Software and its engineering; • Computing methodologies
→ Natural language processing;

KEYWORDS
Stack Overflow, text summarization, data labeling

ACM Reference Format:
Bonan Kou, Yifeng Di, Muhao Chen, and Tianyi Zhang. 2022. SOSum: A
Dataset of Stack Overflow Post Summaries. In 19th International Conference
on Mining Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.
3528487

1 INTRODUCTION
Programmers often resort to online Q&A forums such as Stack
Overflow (SO) to learn new concepts and APIs, find solutions, fix
bugs, etc. [5, 9, 48, 49]. While many advanced search techniques
have been proposed [10, 15, 34, 35, 52, 55], programmers still have
to spend a lot of time reading, assessing, and comparing relevant
Q&A posts to identify the one that best suits their context and
task [11, 26, 50]. For example, a survey with 72 software developers
from the industry have shown that it is cognitively demanding to
sift through many online posts returned by a search engine and
developers wish to get tool support for quickly navigating and
assessing the relevance and quality of online posts [50].

Recently, several research efforts have been made to summarize
SO posts or API documentation to facilitate users’ navigation of
relevant online information [18, 30, 40, 50]. In particular, Nadi and

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
2022. ACM ISBN 978-1-4503-9303-4/22/05.
https://doi.org/10.1145/3524842.3528487

Question 133051: What is the difference between visibil-
ity:hidden and display:none?
Post 133465: They are not synonyms. <code>display:none
</code> removes the element from the normal
flow of the page, allowing other elements to fill in.
<code>visibility:hidden</code> leaves the element in
the normal flow of the page such that is still occupies
space. Imagine you are in line for a ride at an amusement
park and someone in the line gets so rowdy that security
plucks them from the line. Everyone in line will then move
forward one position to fill the now empty slot. This is
like <code>display:none</code>. Contrast this with the
similar situation, but that someone in front of you puts on
an invisibility cloak. While viewing the line, it will look like
there is an empty space, but people can’t really fill that empty
looking space because someone is still there. This is like
<code>visibility:hidden</code>.

Figure 1: SO Post 133465 with summative sentences high-
lighted

Treude experiment with four approaches to extract essential sen-
tences from a SO post to summarize the gist of the post [30]. They
run a human study with 43 developers and found that while it was
promising to provide essential sentences as navigational cues, none
of these approaches were sufficient to accurately identify essential
sentences.

The Natural Language Processing (NLP) community has made
significant progress in text summarization based on recent ad-
vances in deep learning (DL) [14, 20, 21, 27, 32]. These models
have achieved promising results on popular benchmarks such as
GigaWord [4] and CNN/DailyMails [1]. However, these DL-based
approaches are data-hungry—it requires massive parallel corpora
of text documents and human-written summaries to train a model.
For example, a well-known text summarization dataset, XSum [31],
contains 226K BBC news articles with one-sentence summaries
written by the authors and editors. Currently, there are no such
high-quality datasets for Stack Overflow, which hinders the devel-
opment of DL-based approaches for SO post summarization or text
summarization for SE-related documents in general, such as bug
reports [23, 25, 36].

To bridge the gap, we present SOSum, the first large dataset of
manually curated summaries for 2,278 popular SO answer posts.
Specifically, the first two authors independently labeled summa-
tive and insightful sentences from each post and then resolved
disagreements to control bias and ensure labeling quality. Figure 1
shows an example SO post from SOSum with summative sentences
highlighted. We also follow the question types identified in prior
work [12, 42] to form a balanced dataset with 177, 182, and 147

https://doi.org/10.1145/3524842.3528487
https://doi.org/10.1145/3524842.3528487
https://doi.org/10.1145/3524842.3528487


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Bonan Kou, Yifeng Di, Muhao Chen, and Tianyi Zhang

answer posts respectively for three main types of questions—how-
to questions, conceptual questions, and debug-corrective questions.
These questions have an average of 362,026 view counts. Under
each question, there are 5.6 answers on average. The manually
curated summaries include 29 words or 1.64 sentences on average,
while the average length for the posts is 74 words or 6.76 sentences.
We also present a GUI tool to annotate SO posts from the SO data
dump, as well as a Chrome extension for online annotation. These
tools can also be used by other SE researchers to construct larger
datasets on SO posts and other types of SE-related documents such
as bug reports in future research. Both our dataset and our data
labeling tools are publicly available on GitHub [2].

2 RELATEDWORK
Our work is motivated by several empirical studies on searching
and navigating relevant posts on Stack Overflow [11, 26, 49, 50].
Xia et al. analyzed search queries from 60 developers and found
that finding explanations for unknown concepts, learning how to
implement a task or use an API, and finding solutions to fix bugs are
the most frequent search tasks [49]. Xu et al. conducted a formative
study with 72 developers and found that information overload
(e.g., too many relevant SO posts, too much text in a post) is the
main challenge of identifying useful information from online Q&A
forums [50]. In an exploratory study with 50 novice programmers,
Chatterjee et al. found that 69% of participants considered too much
text containing unnecessary details as the main reason that slows
down the navigation of SO posts [11].

Recently, several techniques have been proposed to summarize
SO posts to facilitate SO post navigation and information seek-
ing [30, 40, 46, 50]. The most related work is AnswerBot, which
extracts summative paragraphs from SO posts based on various
features such as information entropy and paragraph position [50].
Compared with AnswerBot, our work focuses on more fine-grained
post summarization at the sentence level. CraSolver generates a
summary of bug solutions by selecting important paragraphs from
relevant SO posts based on a multi-factor ranking mechanism [46].
Nadi and Treude experimented with four different information
retrieval or pattern-matching approaches to select essential sen-
tences from SO posts to help programmers navigate SO posts [30].
Through a survey with 43 developers, they found that, while par-
ticipants would indeed like to get navigation support on Stack
Overflow, none of the four approaches were sufficient to provide
such support.

Recent advancements in NLP have made it possible to generate
concise summaries of text documents, such as news articles, using
deep neural networks [14, 27, 29, 31, 32, 45]. For example, Liu et
al. present a news article summarization approach by fine-tuning a
language model [13] with over 300K unique CNN and Daily Mail
news articles along with their news summaries written by article
authors [27]. Narayan et al. present an approach that summarizes
a single document to a one-liner using a convolutional neural net-
work trained on the XSum corpus [31]. Later, Narayan et al. present
another approach in which the task of text summarization is framed
as a ranking problem and solved by globally optimizing the ROGUE
metric in training [32]. Dong et al. frame text summarization as a
contextual bandit problem, in which each document is considered

as a context and each combination of selected sentences is an ac-
tion to take [14]. While these models perform well on news articles,
reusing these models in another domain, such as SO posts, requires
fine-tuning with large-scale parallel corpora due to vocabulary and
language norm shift. To the best of our knowledge, there are no
such corpora with SO posts and post summaries.

In addition to post summarization, there are many other ap-
proaches for supporting information seeking on Stack Overflow,
e.g., integrating SO into an IDE [33, 34], query reformulation for
better search results [35, 52], identifying insightful sentences about
API usage [22, 41, 43], summarizing API opinions [24, 44], detecting
API misuses [38, 53] or deprecated APIs [54] in SO posts, etc. Due
to the page limit, we will not elaborate here.

3 DATASET CONSTRUCTION
This section describes the process of curating the dataset of 2278
popular SO answer posts and their post summaries.

3.1 SO Post Pre-processing
We first extracted SO questions from the Stack Overflow data
dump [3] and ranked them based on their view counts. We chose
view counts since we wanted to focus on popular SO posts first.
Then, the first author manually inspected the frequently viewed
questions and selected three types of commonly asked questions—
how-to questions, conceptual questions, and debug-corrective ques-
tions based on the taxonomy from prior work [12, 42]. Eventually,
the first author selected 177 how-to, 182 conceptual, and 147 debug-
corrective questions to form a balanced dataset. For each question
post, we filtered out its answer posts with negative scores since
they may not be valid answers. We also removed answer posts
that only contain code snippets. For the remaining 2,283 answer
posts, we extracted their content and other metadata such as view
counts and post scores from the SO data dump. Since the content of
each post was stored as plain HTML in the data dump, we removed
the HTML tags and used the NLTK package [7] to break natural
language descriptions into sentences. Pre-processed question posts
and answer posts were stored in CSV.

3.2 SO Post Labeling Tools
We developed a graphical user interface (GUI) to facilitate labeling
summative sentences in SO posts, as shown in Figure 2. A user
can load the pre-processed SO posts into this tool by clicking the
“Select File” button. Then the data labeling tool will show the current
labeling progress, including the number of answer posts in total,
the index of the current post, and the number of labeled posts. It
renders one answer post and its corresponding question at a time.
The content of the rendered answer post is broken into sentences
for the ease of labeling. Some metadata such as SO tags, post score,
and post URL are also rendered. After reading the question title and
content, a data labeler can navigate through the sentences and label
one or more sentences as a summary of the answer post. They can
click “Next” to move on to the next post or “Previous” to change
the labeling of previous posts.

As many new SO posts are posted every day, one may also be
interested in labeling SO posts from the website rather than from
the data dump. Therefore, we also developed a Chrome extension



SOSum: A Dataset of Stack Overflow Post Summaries MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Table 1: Bookmarks and view count for the 506 SO questions
min max average median

Bookmarks 1 5,385 10 75
View count 115,672 632,137 362,026 253,527

Table 2: Statistics of 2283 answer posts and their summaries.
min max average median

Post body length (words) 1 1,320 74 50
Summary length (words) 0 346 29 21
Post Score 0 7,521 125 17

for labeling SO posts in a web browser. A user can select one ormore
sentences from a post, right click, and choose “Mark as Summative
Sentence” to label them as summative sentences. Once the labeling
is done, the user can press “CTRL+ENTER” to download the post
content as well as the labeled summative sentences into a CSV file.
A video demo of this extension and both tools have been made
publicly available on GitHub to support Open Science [2].

3.3 SO Post Labeling Pipeline
We followed the common standard of NLP data labeling process to
label SO posts [8, 39, 51]. The first two authors first independently
labeled summative sentences in 464 answer posts from the first
100 questions in the dataset. Then, the authors compared their
labeling results and resolved the inconsistencies. The initial Cohen’s
kappa score is 0.41. After discussion, a set of labeling rules were
summarized to mitigate bias and ensure labeling consistency. Based
on these labeling rules, the first two authors labeled 526 posts
from the second batch of 100 questions in the dataset. The authors
met again and compared their labeling results. The kappa score of
the second-round labeling is increased to 0.67, which indicates a
moderate agreement under the guidance of the labeling rules [28].
The authors resolved some inconsistencies and further refined the
labeling rules. Finally, they continued to label the rest 1288 answer
posts and resolved inconsistencies. The final SOSum dataset only
includes summative sentences that both authors agree upon. This
whole labeling process takes about 175 man-hours.

The final set of labeling rules are summarized below.
Prefer sentences that directly answer a question. For example, in
Figure 1, sentence 1-3 all contribute to the post on a high level but
since the question asks for the difference between visibility:hidden
and display:none, we select sentence 2 and 3.
Prefer topic sentences over illustrative descriptions. Sentences
such as “for example,...” are not preferred, while sentences that
describe a high-level concept or idea are preferred.
Prefer instructions over explanations Sentences with clear in-
structions on how to complete a programming task or fix a bug, if
any, are selected. Sentences explaining these instructions are not.
Select a complete list of items or steps. If one sentence in a bullet
list or procedure (e.g. “First, try A. Then, do B.” ) is selected, the
corresponding sentences for the following items or steps should
also be selected to ensure completeness and consistency.
Prefer concise sentences over verbose sentences. If there are two
summative sentences, we always pick the shorter one.

Table 3: 10 most popular tags in the 506 SO questions
Tag Question count Tag Question count
Java 96 Sql-server 29
Javascript 52 C++ 24
C 48 JQuery 21
Python 38 PHP 21
Sql 31 .Net 19

Table 4: Data Fields in SOSum
Field Description

Question Id Post Id of the SO question
Question Type 1 for conceptual questions, 2 for how-to questions,

3 for debug-corrective questions
Question Title Question title as a string
Question Body A list of sentences from the question post content
Tags SO tags associated with a question
Answer Posts A list of post ids separated by comma
Answer Id Post Id of a SO answer post
Answer Body A list of sentences from the post content
Summary Summative sentences from the post content

4 DATASET DESCRIPTION
Our final dataset includes 2,278 answer posts and their summaries.
These posts are from 506 frequently viewed SO questions. The
median of bookmarks and view counts of these questions are 10 and
36K respectively, as shown in Table 1. These questions also cover
diverse topics in different programming languages and libraries.
Table 3 shows the 10 most popular tags out of a total number of
669 unique tags associated with these questions.

Table 2 describes the statistics of the 2,278 answer posts in
SOSum. The median number of words in these answer posts and
their summaries is 50 and 21 respectively. The median score (i.e., up-
votes minus downvotes from other SO users) is 17. Figure 3 shows
the distribution of post length and summary length in terms of
words. 90% of posts have less than 272 words, while 90% of the
summaries are comprised of 65 words or less in total.

Table 4 describes the data fields in our dataset. We store the
question post data and the answer post data in two separate CSV
files. These CSV files can be directly loaded into the desktop data
labeling tool described in Section 3.2.

5 USE CASES
This section describes how SOSum can be used to develop SO post
summarization techniques as well as three other potential use cases.
Sentence-level SO post summarization. Despite rapid progress
in NLP, sentence-level text summarization approaches have been
absent in the Stack Overflow domain due to a lack of parallel cor-
pora required for training or fine-tuning existing models. With
SOSum, SE researchers can fine-tune pre-trained NLP models in
the general NLP domain for summarizing SO posts. Some advanced
NLP models SE researchers can fine-tune include BERT, Sentence-
bert, and SpanBERT [19, 27, 37]. For example, one can fine-tune
BERT [13] using SOSum as a sentence-level Conditional Random
Field (CRF) model [27] to predict whether a sentence in a SO post
is a summative sentence.



MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Bonan Kou, Yifeng Di, Muhao Chen, and Tianyi Zhang

Figure 2: A screenshot of the SO post labeling user interface

Figure 3: Frequency of SO posts of different lengths

Question answering (QA). A QA system can automatically gen-
erate an answer to a question expressed in natural language [16].
Developing a QA system often requires a large corpus of question-
answer pairs. Since SOSum includes pairs of question titles and
answer summaries, it can be naturally used to build a QA system for
answering programming questions. Existing systems for answering
programming questions mostly rely on rule-based pattern matching
or unsupervised methods [6, 15, 40, 50]. SOSum offers a large train-
ing dataset that can be used to fine-tune more advanced DNN-based
QA models [16, 17, 47] to answer programming questions.
Summarizing other types of text documents in SE. The lack of
training data with high-quality labels hinders the development of
NLP models for other types of SE documents, such as programming
tutorials and bug reports. Since these documents often share similar
language norms and vocabularies, it is possible to perform transfer
learning. Therefore, SOSum also creates new research opportu-
nities to introduce data-hungry DL models for other types of SE
documents.
Benchmarking. SOSum can be used to benchmark existing text
summarization tools for Stack Overflow [30, 40, 46, 50]. Researchers
have been relying on a small benchmark or user studies to evaluate
existing tools. Compared with using SOSum as a benchmark, user
studies are inevitably limited in scale and also take a long time to
complete. SOSum on the other hand provides an easier and faster

way for researchers to test the accuracy of their tools on a large,
human-validated dataset.

6 THREATS TO VALIDITY
One potential threat to validity comes from the data labeling pro-
cess, since human labelers may introduce errors or biases. Further-
more, different programmers may prefer different summative sen-
tences. To mitigate this threat, the first two authors conducted three
rounds of independent labeling, standardized the labeling rules, and
discussed extensively to resolve inconsistencies. Furthermore, our
final dataset only includes summative sentences that both data
labelers agree upon. Another threat is that SOSum only includes
2,278 pairs of answer posts and their summaries. While it is much
bigger than existing benchmarks used in prior work [30, 40, 46, 50],
it may not be sufficient to train a large NLP model from scratch.
To address this issue, we have released a GUI tool and a Chrome
extension for labeling new SO posts. We wish these tools would
also encourage other SE researchers to construct large-scale, high-
quality training datasets for Stack Overflow and other types of SE
documents.

7 CONCLUSION
Previous studies have shown that navigating SO posts is time-
consuming and programmers wish to get tool support for quickly
understanding and assessing SO posts. We propose SOSum, a
dataset of 2,278 popular SO posts with manually labeled summaries
to foster research on sentence-level SO post summarization. In ad-
dition to the dataset itself, we also present two SO post labeling
tools for offline and online labeling. By making the dataset and
data labeling tools publicly available, we wish to encourage the
construction of more large-scale datasets with high-quality labels
for Stack Overflow and other types of SE documents. In the future,
we plan to add more labeled data to SOSum, conduct a systematic
evaluation of existing SO post summarization tools using SOSum,
and fine-tune advanced NLP models for SO post summarization.



SOSum: A Dataset of Stack Overflow Post Summaries MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] 2022. Document Summarization on CNN/Daily Mail. https://paperswithcode.

com/sota/document-summarization-on-cnn-daily-mail. Accessed: 2022-3-29.
[2] 2022. The GitHub repository of SOSum and SO post labeling tools.

https://github.com/BonanKou/SOSum-A-Dataset-of-Extractive-Summaries-of-
Stack-Overflow-Posts-and-labeling-tools.

[3] 2022. Stack Exchange Data Dump. https://archive.org/details/stackexchange.
[4] 2022. Text Summarization on GigaWord. https://paperswithcode.com/sota/text-

summarization-on-gigaword. Accessed: 2022-3-29.
[5] Rabe Abdalkareem, Emad Shihab, et al. 2017. What do developers use the crowd

for? a study using stack overflow. IEEE Software 34, 2 (2017), 53–60.
[6] Ahmad Abdellatif, Khaled Badran, et al. 2020. MSRBot: Using bots to answer

questions from software repositories. Empirical Software Engineering 25, 3 (2020),
1834–1863.

[7] Steven Bird, Ewan Klein, et al. 2009. Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.".

[8] ElMehdi Boujou, Hamza Chataoui, Abdellah El Mekki, Saad Benjelloun, Ikram
Chairi, and Ismail Berrada. 2021. An open access NLP dataset for Arabic dialects:
Data collection, labeling, and model construction. arXiv preprint arXiv:2102.11000
(2021).

[9] Joel Brandt, Philip J Guo, et al. 2009. Two studies of opportunistic programming:
interleavingweb foraging, learning, andwriting code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 1589–1598.

[10] Kaibo Cao, Chunyang Chen, et al. 2021. Automated Query Reformulation for
Efficient Search based on Query Logs From Stack Overflow. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 1273–1285.

[11] Preetha Chatterjee, Minji Kong, et al. 2020. Finding help with programming
errors: An exploratory study of novice software engineers’ focus in stack overflow
posts. Journal of Systems and Software 159 (2020), 110454.

[12] Lucas BL De Souza, Eduardo C Campos, et al. 2014. Ranking crowd knowledge to
assist software development. In Proceedings of the 22nd International Conference
on Program Comprehension. 72–82.

[13] Jacob Devlin, Ming-Wei Chang, et al. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[14] Yue Dong, Yikang Shen, et al. 2018. Banditsum: Extractive summarization as a
contextual bandit. arXiv preprint arXiv:1809.09672 (2018).

[15] Swapna Gottipati, David Lo, et al. 2011. Finding relevant answers in software
forums. In 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, 323–332.

[16] Karl Moritz Hermann, Tomas Kocisky, et al. 2015. Teaching machines to read
and comprehend. Advances in neural information processing systems 28 (2015),
1693–1701.

[17] Hsin-Yuan Huang, Chenguang Zhu, et al. 2017. Fusionnet: Fusing via fully-
aware attention with application to machine comprehension. arXiv preprint
arXiv:1711.07341 (2017).

[18] Qiao Huang, Xin Xia, et al. 2018. API method recommendation without wor-
rying about the task-API knowledge gap. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 293–304.

[19] Mandar Joshi, Danqi Chen, et al. 2020. Spanbert: Improving pre-training by rep-
resenting and predicting spans. Transactions of the Association for Computational
Linguistics 8 (2020), 64–77.

[20] D. Khashabi, S. Min, et al. 2020. UnifiedQA: Crossing Format Boundaries With a
Single QA System. EMNLP - findings (2020).

[21] Mike Lewis, Yinhan Liu, et al. 2019. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461 (2019).

[22] Hongwei Li, Sirui Li, et al. 2018. Improving api caveats accessibility by mining
api caveats knowledge graph. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 183–193.

[23] Xiaochen Li, He Jiang, et al. 2018. Unsupervised Deep Bug Report Summarization.
In 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC).
144–14411.

[24] Bin Lin, Fiorella Zampetti, et al. 2019. Pattern-based mining of opinions in q&a
websites. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 548–559.

[25] Haoran Liu, Yue Yu, et al. 2020. BugSum: Deep Context Understanding for Bug
Report Summarization. Association for Computing Machinery, New York, NY,
USA, 94–105. https://doi.org/10.1145/3387904.3389272

[26] Jiakun Liu, Sebastian Baltes, et al. 2021. Characterizing Search Activities on Stack
Overflow. (2021).

[27] Yang Liu. 2019. Fine-tune BERT for extractive summarization. arXiv preprint
arXiv:1903.10318 (2019).

[28] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[29] Derek Miller. 2019. Leveraging BERT for extractive text summarization on
lectures. arXiv preprint arXiv:1906.04165 (2019).

[30] Sarah Nadi and Christoph Treude. 2020. Essential sentences for navigating stack
overflow answers. In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 229–239.

[31] Shashi Narayan, Shay B Cohen, et al. 2018. Don’t Give Me the Details, Just the
Summary! Topic-aware Convolutional Neural Networks for Extreme Summarization.
In (2018).

[32] Shashi Narayan, Shay B Cohen, et al. 2018. Ranking sentences for extractive
summarization with reinforcement learning. arXiv preprint arXiv:1802.08636
(2018).

[33] Luca Ponzanelli, Alberto Bacchelli, et al. 2013. Seahawk: Stack overflow in the
ide. In 2013 35th International Conference on Software Engineering (ICSE). IEEE,
1295–1298.

[34] Luca Ponzanelli, Gabriele Bavota, et al. 2014. Mining stackoverflow to turn the ide
into a self-confident programming prompter. In Proceedings of the 11th Working
Conference on Mining Software Repositories. 102–111.

[35] Mohammad Masudur Rahman and Chanchal Roy. 2018. Effective reformulation
of query for code search using crowdsourced knowledge and extra-large data
analytics. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 473–484.

[36] Sarah Rastkar, Gail C. Murphy, et al. 2014. Automatic Summarization of Bug
Reports. IEEE Transactions on Software Engineering 40, 4 (2014), 366–380. https:
//doi.org/10.1109/TSE.2013.2297712

[37] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[38] Anastasia Reinhardt, Tianyi Zhang, et al. 2018. Augmenting stack overflow with
API usage patterns mined from GitHub. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 880–883.

[39] Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2014. Sequence
labeling with multiple annotators. Machine learning 95, 2 (2014), 165–181.

[40] Rodrigo FG Silva, Chanchal K Roy, et al. 2019. Recommending comprehensive
solutions for programming tasks by mining crowd knowledge. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). IEEE, 358–368.

[41] Siddharth Subramanian, Laura Inozemtseva, et al. 2014. Live API documentation.
In Proceedings of the 36th International Conference on Software Engineering. 643–
652.

[42] Christoph Treude, Ohad Barzilay, et al. 2011. How do programmers ask and
answer questions on the web?(nier track). In Proceedings of the 33rd international
conference on software engineering. 804–807.

[43] Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 392–403.

[44] Gias Uddin and Foutse Khomh. 2017. Opiner: an opinion search and summa-
rization engine for APIs. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 978–983.

[45] Sukriti Verma and Vagisha Nidhi. 2017. Extractive summarization using deep
learning. arXiv preprint arXiv:1708.04439 (2017).

[46] Haoye Wang, Xin Xia, et al. 2021. Automatic Solution Summarization for Crash
Bugs. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 1286–1297.

[47] Wenhui Wang, Nan Yang, et al. 2017. Gated self-matching networks for reading
comprehension and question answering. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 189–198.

[48] Yuhao Wu, Shaowei Wang, et al. 2019. How do developers utilize source code
from stack overflow? Empirical Software Engineering 24, 2 (2019), 637–673.

[49] Xin Xia, Lingfeng Bao, et al. 2017. What do developers search for on the web?
Empirical Software Engineering 22, 6 (2017), 3149–3185.

[50] Bowen Xu, Zhenchang Xing, et al. 2017. AnswerBot: Automated generation
of answer summary to developers’ technical questions. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 706–716.

[51] Jinghang Xu, Wanli Zuo, Shining Liang, and Xianglin Zuo. 2020. A review of
dataset and labeling methods for causality extraction. In Proceedings of the 28th
International Conference on Computational Linguistics. 1519–1531.

[52] Neng Zhang, Qiao Huang, et al. 2020. Chatbot4qr: Interactive query refinement
for technical question retrieval. IEEE Transactions on Software Engineering (2020).

[53] Tianyi Zhang, Ganesha Upadhyaya, et al. 2018. Are code examples on an online
Q&A forum reliable?: a study of API misuse on stack overflow. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE, 886–896.

[54] Jing Zhou and Robert JWalker. 2016. API deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
266–277.

[55] Yanzhen Zou, Ting Ye, et al. 2015. Learning to rank for question-oriented software
text retrieval (t). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 1–11.

https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail
https://paperswithcode.com/sota/document-summarization-on-cnn-daily-mail
https://github.com/BonanKou/SOSum-A-Dataset-of-Extractive-Summaries-of-Stack-Overflow-Posts-and-labeling-tools
https://github.com/BonanKou/SOSum-A-Dataset-of-Extractive-Summaries-of-Stack-Overflow-Posts-and-labeling-tools
https://archive.org/details/stackexchange
https://paperswithcode.com/sota/text-summarization-on-gigaword
https://paperswithcode.com/sota/text-summarization-on-gigaword
https://doi.org/10.1145/3387904.3389272
https://doi.org/10.1109/TSE.2013.2297712
https://doi.org/10.1109/TSE.2013.2297712

	Abstract
	1 Introduction
	2 Related work
	3 Dataset Construction
	3.1 SO Post Pre-processing
	3.2 SO Post Labeling Tools
	3.3 SO Post Labeling Pipeline

	4 Dataset description
	5 Use Cases
	6 Threats to Validity
	7 Conclusion
	References

